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Abstract

We present a survey of the calibrated geometries arising in the study of the local singularity
structure of supersymmetric fivebranes in M-theory. We pay particular attention to the geometries
of 4-planes in eight dimensions, for which we present some new results as well as many details of
the computations. We also analyse the possible generalised self-dualities which these geometries
can afford. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent developments suggest that the natural language in which to phrase the study of
intersecting branes is that of calibrated geometry. This has proven effective both in the
description of their singularity structure [2—4,23] as in the study of the geometry of branes
within branes [22]. In our recent work [2—4] on the singularity structure of intersecting
branes, which continues the approach laid out in [37,42], we encountered a number of
calibrated geometries, not all of which are well known. We believe that it could be useful
to present a detailed survey of these geometries in the present context. This is one of the
purposes of the present paper. Manifolds admitting special geometries of the kind described
here also admit generalisations of the notion of self-duality. In the context of gauge theory,
these generalised self-duality give rise to higher-dimensional generalisations of the notion
of instanton. We think it useful also to work out the possible generalisations of self-duality
that these geometries give rise to.
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This paper is organised as follows. We start in Section 2 by explaining what is meant by a
geometryn this context and how to translate between its local and global (for lack of a better
name) descriptions. Then in Section 3 we will explain how a configuration of intersecting
branes gives rise to a geometry, and present a list of all the known geometries which arise
in this way. Section 4 is devoted to a case-by-case description of each of these geometries.
Section 5 presents a detailed “guided tour” of the different eight-dimensional geometries.
The calculational details presented in this section might be of some help to people working
in this topic. In Section 6 we explore the different generalisations of self-duality which
these calibrated geometries afford. For some of the less common geometries, these results
are new. Finally in Section 7 we make some concluding remarks.

2. What is meant by a geometry?

Generally speaking, a geometry is some sort of structure we endow a manifold with.
Traditionally a geometry is specified through the existence of certain tensor fields on the
manifold. Many well-known geometries arise in this way. For example, a metric gives rise
to Riemannian geometry, a closed non-degenerate 2-form to symplectic geometry, and a
complex structure gives rise to complex geometry. We can add more structure to one or more
of these and obtain many of the geometries which have taken centre stage in recent times:
Kahler, hyperkéhler, quaternionic Kahler, etc. This way of defining a geometry often goes
hand-in-hand with a reduction of the structure group of the frame bundle. On a differential
n-manifold without extra structure, the frame bundle is a principa),Bbundle. With
the introduction of a metric, we can consistently restrict ourselves to orthonormal frames,
and in effect reduce the structure group tp. Similarly, if n = 2m, a complex structure
allows us to consider complex frames so that the structure group reduces, {6 Glore
generally, & -structure on a manifold is a reduction of structure group of the frame bundle to
G c GL,R, so that one can choose local frames which@selated. Not every manifold
admits anyG-structure: there might be topological obstructions. For example, although
every manifold admits a metric and hence gnsbucture, unless the manifold is orientable
it will not admit an SQ structure.

A common way to reduce the structure grougta- O, is via a metric whose holonomy
lies in G; although not allG c O, can be so realised, unless one simultaneously allows
for torsion in the metric connection. Given a Riemannian manifdldvhose metric has
holonomyG, the holonomy principle [10] guarantees the existence of privileged tensors on
M corresponding to those (algebraic) tensors whichGaiavariant. For example, this lies
at the heart of the equivalence between the two common definitions of a Kéhler manifold:
as a Riemanniani2-dimensional manifold with L) holonomy, or as a Riemannian mani-
fold with a parallel complex structure — the complex structure and the metric both being
U,,-invariant tensors. This way of specifying a geometry has played an important role in
superstring theory, via the study of supersymmetric sigma models particularly.

More recently, however, with the advent of branes, another way of specifying a geometry
has become increasingly relevant. Instead of using the existence of tensorial objects or of
reductions of the structure group, one specifies a geometry on a manifold by singling out a
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special class of submanifolds. For example, one can talk about minimal submanifolds of a
Riemannian manifold, or about complex submanifolds of a complex manifold. In fact, in a
Kahler manifold these two kinds of submanifolds are not unrelated: complex submanifolds
are minimal. The theory of calibrations provides a systematic approach to understanding
this fact and allows, in addition, for far-reaching generalisations of this statement. In order
to facilitate the discussion it will be necessary to first introduce a few important concepts.

2.1. Submanifolds and Grassmannians

Let N be ap-dimensional submanifold of andimensional manifold/. At each point
x € N, thetangent spacg& N to N is a p-dimensional subspace of the tangent sjjaoée.

In a small enough neighbourhodd of x, we can trivialise the tangent bundle &f. This
means essentially that we can identify the tangent space to any pdinwith R”. Now
consider those poingsin U which also lie inV. Under this identification, the tangent space
T,N of N aty will be identified with ap-plane inR". This defines a map frov N U to

the space op-planes inR". Spaces of planes are generically call@ssmannianand

will play a central role in the following discussion, so it pays to take a brief look at them
before going further.

Itis convenientto identify-planes with certain types pfvectors. The identification runs
as follows. Letr be ap-plane inR". Letey, ey, ... , ¢, be a basis forr. Then thep-vector
e1 N ez A--- A ey, is non-zero. However, if we choose a different basise’s, ... , ¢/,
for 7, then we generally end up with a differeptvectore’y A e'2 A --- A €’(,. Of course,
both p-vectors are proportional to each other, the constant of proportionality being the
(non-zero) determinant of the linear transformation which takes one basis to the other.
Conversely, given a non-zegsvectorvy A vz A - - - A vy, We associate with it thg-plane
7 spanned by thév; }, with the proviso that as above, proportiopaliectors give rise to
the samep-plane. We can eliminate the multiplicative ambiguity by picking a privileged
p-vector for each plane. This can be done by introducing a metf¥ iand considering
only oriented planes. We will reflect this fact by saying that we consider orignfddnes
in the Euclidean spadg’.

Let G(p|n) denote the Grassmannian of orientegblanes inE". As we now show it
can be identified with a subspace of the unit spherE(H Indeed, given an oriented
p-planer, letey, ez, ... , e, be an oriented orthonormal basis and considerptivector
etnean---Nep € AP E", which we will also denote consistently with the identification
we are describing. The norm of apyvectorvy A va A --- A v, is given by

lvs Ava Ao A vyl = [detiw;, v)].

This norm extends to a metric o ” E, which turns it into a Euclidean spad&?’. It
follows thatz has unit norm, so that it belongs to the unit spher&in. Conversely,
every simple (i.e., decomposable into a wedge produgt @éctors) unitp-vectorr =
et ne2A--- Aep € \PE" defines an oriented-plane with basigs, es, ... , e,. In other
words, G(p|n) can be identified with a subset of the unit spheréﬂi?\), so that itis a
compact space. This can also be understood from the fact that the Grassm@ijian
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is acted on transitively by SO Indeed it is not hard to see that the isotropy consists of
changes of basis in and its perpendiculan — p)-planer*; whence it is isomorphic to
SO, x SO,_,. This means that the Grassmannian is a coset manifold:

SO,

2.2. Geometries and Grassmannians

As mentioned above, a geometry can be specified by singling out a class of special sub-
manifolds. For example, one could consider submanifolds whose tangent spaces belong to
a certain subset of the Grassmannian of planes. These give rise to the sdscafiethan-
nian geometriesA special type of subset of the Grassmanriaip|n) are those sets which
correspond to the orbit of a plane under a subgroup of. $Qwill turn out that all the
geometries that we will encounter will be of this form.

For example, suppose that= 2m. Then we could consider compléxdimensional
submanifolds; i.e.p = 2k. The tangent subspaces to these submanifolds-dimensional
complex subspaces & = R". All the tangent planes belong to the,Uc SO, orbit
of any one of the planes. The resulting orbit is the complex Grassmanhigk|m) of
k-dimensional complex planes @". It is not hard to see that

Us . SUy
Ue X Up—k S(Uk x Up—p)’

Geklm) =

so that, in fact, the planes belong to the samg, Stbit.

Similarly if n = 4¢, we can consider quaternionic subspacé¥ck R*. They necessar-
ily have dimensiorp = 4. The GrassmanniaBig (j|¢) of quaternionic planes correspond
to the orbit of a plane under g SO,, so that

Sp

Gu(jlH) = W
J —J

Other examples are possible, and we shall discuss them below. For now let us simply
point out the fact that for the complex and quaternionic Grassmannians, the subgroups SU
and Sp of SO, are such that they (or their lifts to subgroups of Spieave some spinors
invariant. This is intimately linked to supersymmetry and will also be the case for the other
examples we will encounter. We now turn our attention to another way to single out subsets
of the Grassmannian.

2.3. Calibrations

Calibrations will provide us a tool with which to specify subsets (faces, actually) of the
Grassmannian of planes. The geometries which are obtained in this fashion are known as
calibrated geometriesThe foundations of this subject are clearly explained in [26], and a
shorter but lucid exposition can be found in [35].
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Leto € AP(E")* be a (constant coefficienp)-form onE". It defines a linear function
on A\? E", which restricts to a continuous function on the Grassman@igrin). Because
G(p|n) is compact, this function attains a maximum, called¢bmasf ¢ and denoted
llell*. If ¢ is normalised so that it has comass 1, then it is calledlération. Let G(¢)
denote those points itF(p|n) on which g attains its maximumG (¢) is known as the
p-Grassmanniarand planes € G(¢) are said to bealibrated byy. The subset, G (¢) C
G(p|n), where the union runs over all calibratiopsdefines théaces ofG (p|n). The name
comes from the fact that if we think @ (p|n) as a subset of the vector spd&i(é), then
G () is the contact set afi (p|n) with the hyperplangs e ]E(Z)ko(é) = 1}. Now, because
@ is a calibrationgp (&) < 1 and hencé& (p|n) lies to one side of that hyperplane.

Computing the comass ofiaform is a difficult problem which has not been solved but
for the simplest of formg, those which have a high degree of symmetry or those which can
be obtained by squaring spinors. Determining the faces of the Grassmannian has proven
equally difficult and has only been achieved completely in the lowest dimensions. The
determination of the faces of the Grassmanr@gp|n) is not an easy problem whenever
p is different from 1, 2p — 2, orn — 1. To this day, only the cases= 6 [14,27,34] and
n = 7 [28,34] have been fully solved, whereas there are some partial resultsf&[16].

In the study of static fivebranes in M-theory it is the case 10 that is needed.

A p-submanifoldN of E", all of whose tangent planes belong @y) for a fixed
calibration ¢, is said to be aalibrated submanifoldA calibrated submanifoldv has
minimum volume among the set of all submanifoldswith the same boundary. This is
because

voIN:/q):/ ¢ <volN’,
N ’

where the second equality follows by Stokes’ theorem. Calibrated submanifolds constitute
a far-reaching generalisation of the notion of a geodesic. Indeed, the Grassmannian of
oriented linesG (1/n) is just the unit spher§”—! ¢ E*, whose faces are obviously points.
Hence the tangent spaces of a one-dimensional submaiifbdong to the same face if
and only if L is a straight line. Notice that there is a duality betwegedimensional and
p-codimensional submanifolds; in factifis a calibration so is@. Hence hyperplanes in
[E" are also (locally) volume-minimising.

This theory is not restricted to constant coefficient calibration&"inIn fact, we can
work with d-closed formsp in any Riemannian manifoldM, g). The comass ap is now
the supremum (over the points M) of the comasses at each pointMfis compact, this
supremum exists. A calibration is now/aclosed form normalised to have unit comass; or
equivalent one which satisfies

(&) <volg forall oriented tangenp-planest atx.
Notice thatthere may be pointsifi for which thep-Grassmannian is empty. The same ar-

gument as before shows that calibrated submanifolds are homologically volume-minimising.
Of course, this crucially necessitates thdie d-closed.
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If an oriented Riemanniam-manifold has reduced holonomy, meaning a proper
subgroupG of SQ,, then the holonomy principle guarantees the existence of parallel
(henced-closed) forms corresponding to tle-invariants in the exterior power of the
tangent representation. It turns out that in many (if not all) cases, the parallel forms are
calibrations giving rise to interesting geometries. Ihé&rassmannian associated to a
G-invariant formg contains, and in many cases coincides withGherbit of any one of its
planes.

3. The (local) geometry of intersecting branes

In this section we summarise the results of [2—4] and tabulate the different geometries
that were found. These geometries will be described in more detail in Section 4.

3.1. From branes to geometry

Branes can be understood as certain types of solutions to the supergravity equations
of motion. These solutions are characterised by their invariance (at least locally) under a
(p + 1)-dimensional super-Poincaré subalgebra. The solutions describe the exterior space-
time to the worldvolume of @-dimensional extended object: the brane. The brane therefore
corresponds to g + 1)-Lorentzian submanifold, with possible self-intersections. In many
cases these submanifolds are minimal and just as for minimal immersions [29,30,33,36]
one can ask what is the local singularity structure of a brane solution.

For definiteness we will only discuss fivebranes in 11-dimensional supergravity in this
note. It is clear that this approach generalises to genpetahnes in this and other super-
gravities; although it may be possible to treat more general cases from this one by using
duality transformations.

Let B be the worldvolume of a fivebrane in an 11-dimensional spin maniféld=ix
a pointx € B. Choosing an orthonormal framee, e1, . . . , eg, e; for the tangent space
T.M to M atx, we can identify7, M with 11-dimensional Minkowski spacetinf&%1.

The tangent spaces (ifis a singular point of the immersion then there is more than one)
to the worldvolume of a fivebrane passing througtiefine a subset of the Grassmannian
G (5, 1|10, 1) of time-oriented (5, 1)-planes %1, which analogously to the Euclidean
case, is a coset space

T
SO0,

G(5,1/10,1) = :
SOl , x SGs

where SO stands for the connected component of the identity. The requirement of super-
symmetry constraints which subsets of this Grassmannian can the tangents to the branes
belong to.

L Following [42] we employ the symbal(pronounced ‘ten’) to refer to the tenth spatial coordinate.
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3.2. Supersymmetry

Let Cly 10 be the Clifford algebra associatedi& 1, but with the opposite norm. In other
words, ifv € E1%1 then its Clifford square in Gl is given by

v-v=+[v|?1,

where||v]|? = -2+ (w12 +- - - + (v1)2. As associative algebras Gl = Matz(R) @
Mats2(IR), whence it has two inequivalent irreducible representations, each real and 32-
dimensional. They are distinguished by the action of the volume element, which takes the
valuest1. Fix one of these irreducible representatiansence and for all — the choice is
immaterial because they are both equivalent under;gpitc Cly 10. Every (5, 1)-planer

in £191 defines a subspace

A@@)={y € Alm -y =y},

where- stands for Clifford action and where we have used implicitly the isomorphism
of the Clifford algebra Gl 1o with the exterior algebra. The subspatér) is non-zero.
In fact, becauser has unit norm, so that - = = 1, and zero traceA(wr) C A is 16-
dimensional.

If 711 = 7, 72, ..., my arem (5, 1)-planes, then we say that the configuratigh, ; is
supersymmetrid and only if

A(Um)zﬂAw»¢m.
i=1

i=1

Moreover, such a supersymmetric configuration is said to preserve a fractiérihe
supersymmetry, whenever

m
32v =dimA (U m) .

i=1

A priori v can only take the values, &, 3, ... , 3; although only the following fractions
3 1

are known to occur'g—lz, i6 32 8 320 16° 4 and%. From the full solution [4,37] of the two
fivebrane problem it follows that there are no configurations with fracﬁioa Vo< %
Therefore the only possible fraction which has yet to appeég.is

A brane B such that its tangents define a supersymmetric configuration is cafled a
persymmetric braneAn important problem in this topic is the classification of the possible
supersymmetric configurations of the so-called intersecting branes (see [21] for a recent
review and guide to the literature). Each such configuration gives rise to a subset of the
Grassmannian and, by the discussion in Section 2, to a geometry which, as we will see,
turns out to be calibrated. This follows from the correspondence between spinors and cali-
brations, to which we now turn.
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3.3. Calibrations and spinors

The relationship between spinors and calibrations is well documented. Although com-
puting the comass of a forg is generally a difficult problem, it simplifies tremendously
wheng can be constructed by squaring spinors. The cleaner results are in seven and eight
dimensions [25,31] and more generally in@mensions [15]; but similar results can also
be obtained in 11 dimensions with Lorentzian signature [3]. Remarkably, it is the 11-and
eight-dimensional cases which arise in the study of intersecting branes [3,4].

3.3.1. Eight dimensions

Let us first discuss the eight-dimensional case. As an associative algebra, the Clifford
algebra 4 is isomorphic to the matrix algebra MatRR). This means that it has a unique
irreducible representation which is real and has dimension 16. Under the spin group
Sping C Clg, A breaks up a&\ & A_, where eachh 1 corresponds to spinors of definite
chirality. Letys € A be a chiral spinor, and consider the bispigio® v . It is an element
of Clg which, normalising the spinor appropriately, can be written as

Y ®y =1+Q+vol, (1)

where$ is a self-dual 4-form ifE8. Now let& be a simple unit 4-vector ift®. Then it
follows from the expression of the bispinor thaté) (v |12 = (¥, & - ¥), where||y ||2 =
(¥, ) is the norm relative to the natural Sgimvariant inner product o . By the
Cauchy—Schwarz inequality, it follows that

(V. 6-4) _1IE- VI
iz = vl

Becausé belongs to Spip C Clg, [|€ - ¥ || = [[¥]l, whence2 (&) < 1 forall&. In other
words, 2 has unit comass; i.e., it is a calibration. It follows from this argument that the
plane defined by the 4-vectéris calibrated by if and only if & - ¢ = .

What can one say about tkeGrassmannian? The isotropy of a chiral spitioe A is
a certain Spiéi subgroup of Spig under which bothA_ and the vector representation of
Spirg remainirreducible. This means tffats also Spig -invariant, whence the Spjrorbit
of any planet in the Q-Grassmannian will also belong to tieGrassmannian. In fact, it
is not difficult to show that the Sp}fnorbit is theQ2-Grassmannian, which in turn coincides
with the Grassmannian of Cayley planes. We will have more to say about this below.

Q@) =

3.3.2. Eleven dimensions

Now let A denote one of the two irreducible representations gfig;land lety € A be
a spinor. Squaring the spinor we obtain on the right-hand side a 1dm@R2-form¥ and
a 5-form®:

VRV =E+V+ ], (2)
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where byyr = —(eg- ¥)! we mean the Majorana conjugate. In this expression, the farms
W and® are a 1-, 2-and 5-form iB1%1, respectively. Under the orthogonal decomposition
E101 — E10 g Rep, the 5-form® breaks up as

P=ejAA+ O, 3)

whereA and® are a 4-and a 5-form dito, respectively. Now lef be an oriented 5-plane in
[E%and consider the bilinear - . Using (3) and the definition of the Majorana conjugate,
one can rewrite this as

(W, (o nE)-¥) =OE)Tr1 =320(8),

where we have introduced the Spirinvariant inner product—, —) defined by(x, ¥) =
x . By the Cauchy—Schwarz inequality for this inner product, we find that

OF) < 3llvl lIton &) - vl (4)

Because is a unit simple 5-vectotj(eg A §) - || = ||¥]l, whence

%) < Syl

In other words, the comass 6fis given by3i2||1//||2, and a 5-plané is calibrated byo if
and only if the (5, 1) planea = ¢g A & obeysr - ¥ = ¥, which is precisely the condition
thatyr belongs toA ().

The nature of theé-Grassmannian depends on the isotropy group of the sginadx
non-zero Majorana spinaf of Spiny o ; can have two possible isotropy groups [11]: either
SUs C Spinyg, which acts trivially on a time-like direction which can be chosen ted)e
or a 30-dimensional non-semisimple Lie gro@p= Spin, x R®, acting trivially on a null
direction. In the former case, the 5-foigis SUs-invariant and thé-Grassmannian will
contain the Sig-orbit of the planer. This orbit turns out to be the fulb-Grassmannian,
which is the Grassmannian of special Lagrangian planB9nin the latter case® has the
form v* A Q whereS2 is a Cayley calibration in an eight-dimensional subspéoce E°©
andv € V= is a fixed vector perpendicular 6. In this case th&@-Grassmannian agrees
with the Q-Grassmannian, which is isomorphic to the Grassmannian of Cayley planes in
V = 8.

3.4. Summary of results

We can summarise the foregoing discussion as follows. Given any supersymmetric con-
figuration of M5-branes, the tangent plangs} at any given singular point belong to a
face of the Grassmannian: the intersection of the faces corresponding to all the spinors
¥ which belong toA(r;) for all i. We will call such a face of the Grassmanniarsla
persymmetric faceThe main problem in the study of the local singularity structure of
supersymmetrit15-branes is the determination of the supersymmetric faces of the Grass-
mannianG (5, 1|10, 1) of (5, 1)-planes ifE%1, and for each such face to determine the
fractionv of the supersymmetry which is preserved.



108 J.M. Figueroa-O’Farrill / Journal of Geometry and Physics 35 (2000) 99-125

The first attempt at solving this problem was by Ohta and Townsend [37] who, follow-
ing up the work in [42], classified the supersymmetric static configurations of a pair of
M5-branes. (Some earlier incomplete results can be found in [40].) The solution of the two
fivebrane problem was completed in [4], where we also considered fivebranes which are
moving relative to each other. The multiple brane problem is still open, but some partial
results can be found in [2-4,23]. As explained in [2,4], but see also [3,8,23], the supersym-
metric faces consist of planes which lie in the orbit of one of the planes under the action of a
subgroup of Spiy, ; which leaves invariant some subspacéof-or each such subgroap
one can determine the fractiorof the supersymmetry which is preserved and the geometry
defined by its orbit in the face of the Grassmannian.

We can distinguish two cases: faces in which all planes share acommon time-like direction
and faces in which all planes share a common light-like direction. The former correspond
to static brane configurations, whereas the latter correspond to branes in motion. Moreover,
as shown in [4], supersymmetric configurations of branes are obtained by null-rotating
(see, e.qg., [39]) already supersymmetric configurations consisting of Cayley planes in eight
dimensions.

We summarise the known results in Table 1. Each of the geometries in the table is defined
as theG-orbit of ap-plane inE". For each such geometry we also list the isotropy subgroup
H C G of the reference-plane, as well as the type of (calibrated) geometry which one

Table 1

Some of the geometries associated with intersecting brane configurations, together with the fraction of the super-
symmetry which is preserved both for static and for moving branes

(pln) GroupG Isotropy H GeometryG/H Fractionv
Static Moving

(5/10) SUs SGs SLAGs % -
(5/10) SU, x SUs SO, x SOz SLAG; x SLAG3 i -
(48 Spin, (SU)%/Z Cayley % %
(418) SU, SOy SLAG, X %
(418) SU, S(Uz x Uy) Ge(2/4) x i+
(418) Sp, Uz CLAG> 3 ik
(418 Sp, Sp, x Spy Gu(1)2) 3 3
(4I8) Sp, x Spy U1 x U (Ge(112))? 3 %
(418 Sp. x Spy Sp, 3,1) i 5. >
(4/8) Spy U 3.2 o >
(48 U {1 3.3) & 3
@7 G» SOy Associative X X
(316) SUs SO; SLAG3 i 4
(26) SUs S(Uz x Uy) Ge(13) 3 3
(214) SU; SO, SLAG; i 3
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obtains. We also tabulate the fractions of supersymmetry both for static and fwheé)
moving branes. Some entries have more than one possible fractfmmmoving branes.
These correspond to different but isomorphic subgrakipbhe static fraction depends only
on the conjugacy class @f in Spin, g, but the moving fraction is a more subtle invariant of
the configuration and depends intricately on hGwits in Spirg.

It may prove useful to explain one of the entries in detail. Let us consider for instance
the fourth row in the table. These configurations are obtained as follows. For static config-
urations, pick a (5, 1)-plane = e A &, whereé is a 5-plane ireg- = E0. The allowed
configurations consist of plan@s = eg A £/, whereg’ is in the orbit of§ under a subgroup
G = SUy. G leaves one direction invariant,say, in&, so that the plane can be written
asm = eg AV A ¢, Wheret is a 4-plane in the eight-dimensional subspacejobn which
SU, acts irreducibly. All other planes will be of the forai = eg A v A ¢’ where?’ is in the
G-orbit of ¢. The isotropy (inG) of ¢ is a subgrougH = SO, and with a little more effort
one can recognise the subset of the Grassmannian as consisting of the special Lagrangian
4-planes. Those configurations will generically presq]@/ef the supersymmetry. For mov-
ing branes one simply starts with a configuration of static branes, namely planes of the form
7’ = eg A v A L' where¢’ a special Lagrangian 4-plane, and performs an arbitrary null
rotation to each of the planes. Only null rotations along directions perpendicular to the plane
7’ change the configuration, whence the resulting Grassmannian is a homogeneous bundle
overG/ H with fiboreR®. The generic configuration now preser\ggwf the supersymmetry.

4. Some geometries associated with intersecting branes

We now start a case-by-case description of the geometries in Table 1. These geometries
are not new, of course, but some may not be well-known. Complex geometries are of
course classical, and to some extent so are quaternionic geometries. The special Lagrangian,
associative and Cayley geometries were discussed initially in Harvey & Lawson’s [26]
foundational essay on calibrated geometry. The complex Lagrangian geometry (at least
in dimension eight) as well as the other geometries associated to self-dual 4-forms are
discussed in [16].

4.1. Complex geometry

The complex geometry of-planes inC" = R2" is defined by the Grassmannian
Gc(klm) C G(2k|2m). ltis the SUY, C SOy, orbit of a given real R-plane. Such planes
are calibrated by the properly normalisetti power of the Kahler form

m
w = dei A dyi,
i=1

wherez’ = x’ 4+ /=1y’ are complex coordinates. It follows from Wirtinger’s inequality
(see, e.g., [18]) that thekZorm (1/k!)ew* has unit comass and that its Grassmannian is
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precisely the Grassmannian of compkeplanes. The Kahler form is left invariant by g,U
subgroup of S@,,, whose intersection with the isotropy §0x SOy, 2k (in SOp,,,) of a
real plane is Y x U,,_. Note however that the centre of lacts trivially, whence factoring
it out, we can write

SUp

Ge(klm) = —S(Uk U

In the study ofM5-branes we have the following Grassmannians appea€igl|3),
Ge(214) = G(2/6), andG(1]2) x Ge(112) = G(2/4).

4.2. Quaternionic geometry

Consideff = R* and, on it, the quaternionic 4-form

l
© = dx' Ady’ AdZ' Adu,
i=1
where a quaternionic vector has componepts: x'i + y'j 4+ z'k + w'1. Then results of
Berger [7] show that the gform (6/(2j + 1)!)®/ has unit comass, and the corresponding
Grassmannian is nothing but the GrassmaniGanj|¢) C G(4j]|4¢) of quaternionic
J-planes. This Grassmannian is acted on transitively yS®0y,, and the intersection
of Sp, with the isotropy SQ; x SOs-4; of a real 4i-plane, is given by Spx Sp,_;,
whence

Sp

Gu(jlt) = W
J —J

In the above table, it i6H(1]2) = G(1/5) = $* which appears.
4.3. Special Lagrangian geometry

Special Lagrangian geometry is another geometry associated j0 SI$Oy,,. This
geometry is complementary to the geometry of complex plan&¥ igc R?”. Indeed, it is
a geometry of totally real planes. Consider the forms

A? =Red’ dzt AdzZ A - AdZ”,

wherez’ are the complex coordinates f@F introduced in Section 4.1 artle S. It is
shown in [26] thatA @ has unit comass, so that itis a calibration. Its Grassmannian consists
of the so-calledpecial Lagrangiamlanes. These planes are Lagrangian with respect to the
Kahler formw on C" defined in Section 4.1: i.e., they are maximally isotropic relative to
. Notice however that the subset Gim|2m) consisting ofall Lagrangian planes (with
respect taw) is not thep-Grassmannian for any. Nevertheless, it is fibred over the circle
with fibres the special Lagrangian planes relativeatd, for 6 e S*. In other words,
every Lagrangian plane is special Lagrangian with respesttbfor somes. Notice that
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Un C SOy, doesnot preserveA® now, since the centre shifts but SU, does. Its
intersection with the isotropy SPx SO,, of anm-plane is the diagonal SQ whence the
special Lagrangian Grassmannian SLAGan be written as
SU,
SLAG,, = ——.
m SQn
Notice that form = 2, special Lagrangian geometries can be identified with complex
geometries relative to a complex structure which is also left invariant by the same SU
subgroup. This is because $& Sp, actually leaves invariant a quaternionic structure
on H = C2. Other special Lagrangian geometries which appear in the table are SLAG
SLAG4 = G(3]6), and SLAG.

4.4. Associative geometry

Associative and Cayley geometries are intimately linked to the octonions. There are many
constructions of the calibrations which define these geometries, but they are all in one way
or another related to the octonions. Let us therefore consider the 3sfomR’ defined as
follows. We identifyR’ = Im Qwith the imaginary octonions. The octonions are a normed
algebra, whence in addition to a multiplicatiothey also have an inner produgct. The
3-form ¢ is defined by

o(a,b,c) ={a,b-c)

foralla, b, c € Im Q. We can choose abasisi =1, ... , 7, for the imaginary octonions,
and canonically dual basis, relative to whichy can be written as

¢ = 0125+ 0136+ 0147 — 0237 + 0246 — 0345 + 567,

where we have used the shorthad= 6; A 6; A ;. Harvey and Lawson [26] proved that

¢ is a calibration. The-Grassmannian consists of the so-cabsdociativeplanes, which

are all constructed as follows. Lit], k generate any quaternion subalgebr@ofhen the
3-planei A j A k is associative, and moreover all associative planes are constructed in this
way.

The group of automorphisms of the octonion€is and its action is such that it stabilises
Im Q. It also preserves the inner product, whence it legves/ariant. In fact,G, can be
defined [12] as the subgroup of @R which leavesp invariant. The isotropy (ifG2) of
an associative plane is isomorphic to aryS0bgroup, which acts on Ifdas follows. We
identify Im Qwith Im He Hand SQ with theZ; quotient of Sp x Sp;, with Sp; the unit
imaginary quaternions. Thusgf= (g1, g2) € Sp; x Spy, then

gla,b)=(q1-a-q1,92-b-q1)

fora e ImHandb € H Notice that theZ, subgroup generated liy-1, —1) € Sp; x Sp;
acts trivially. Clearlyi A j A k is left invariant by SQ and it is shown in [26] that S®is
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precisely the isotropy of this 3-plane. In summary, the associative Grassmannian is given
by

L Go
Associative= ——.
SOy

4.5. Cayley geometry

The Cayley Grassmannian is the face exposed by a self-dual 4stamiR8, which we
identify with Q as before. Indeed, we can buifdl in terms of the associative 3-forg
defined above, in the following way. Consider the Hodge gugh Im Q) of ¢:

@ = %79 = 01234 — 01267+ 01357 — 01456+ 02356+ 02457+ O3467,

in the obvious notation. Thinking @f as a 4-form ir0), its Hodge dual is given by A 0g,
wheredg is the canonical dual form tb € Q. We can now define a self-dual 4-forgin
Oas follows:

Q=@ + ¢ A g = 01234+ 01258 — 01267+ 01357+ 01368 — 01456+ 01478+ 62356
—02378+ 02457+ 02468 — 03458 + 03467+ Os678

As provenin[26]£2 has unitcomass. Itis known as tBayley calibrationand its calibrated
planes make up th€ayley Grassmannialternatively, can be defined in terms of the
inner product orf®and thetriple cross product

axbxc:%(a~(1§~c)—c~(l5~a))
as follows:
Q(a,b,c,d)={(a xbxc,d).

It follows that the typical calibrated plane is of the fofm i A j A k, wherei, j, andk = i -
are the imaginary units in a quaternion subalgebr@ of

The Cayley forme2 is invariant under a Spinsubgroup of S@, which acts transitively
on the unit sphere i® with isotropyG». As in the associative case, Spitan be defined
as the subgroup of GIR which leave<2 invariant. It follows that Spinacts on the Cayley
Grassmannian. This action is transitive, with isotropy a SUbgibap (Sp, x Sp, x Sp,) /Z>
which acts orfDas follows. Ifg = (g1, g2, g3) € Sp; x Sp, x Sp, is atriple of unitimaginary
guaternions, then undé = H® Hwe have

gla,b)y=1(q3-a-q1,q2-b-q1)

for a, b € H. Notice that(—1, —1, —1) acts trivially, whence the action factors through

Clearly H leavesl A i A | A k invariant, and it is shown in [26] tha is precisely the

isotropy of such a plane. In summary, the Cayley Grassmannian can be written as
Spiry

Cayley= 5
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Notice that the Cayley Grassmannian is isomorphiGt8|7). This is no accident, since
given any oriented 3-plane iR, there is a unique Cayley planel®§ which contains it.

4.6. Complex Lagrangian geometry

The complex Lagrangian geometry is a geometry ©pRanes inR*. Identifying R*
with Hf, determines a quaternionic structure/, andK = I J. The complex Lagrangian
planes are those planes which are complex relative say, and Lagrangian relative fo
Let w; denote the Kahler form relative g andA(JO) denote the special Lagrangian form
relative toJ with angle® = 0. Then consider the sum

m_1A0) 11 ¢
E=3A +5q0;

One can show th& is a calibration, whose Grassmannian consists of those ¢gzabes
which are complex relative td and (special) Lagrangian relative 1q i.e., the complex
Lagrangian 2-planes. The quaternionic structyte J, K} determines an Spsubgroup of
SOy, which leavesE invariant. Its intersection with the isotropy of a reference complex
Lagrangian plane is adsubgroup, whence

Notice thatCLAG 1 = SLAG: = G(1]2). Apart from this degenerate case, itIsAG; =

G (2|5) which appears in the table. In this case, it is not hard to showdhiatactually
self-dual, as was the case for the Cayley, quaternionic and complex geometries of real
4-planes inR® discussed above, and for the remaining three calibrations to be discussed
below.

4.7. Other geometries associated to self-dual 4-forms

It remains to discuss the three geometries labelled (3, 1), (3, 2) and (3, 3) in the table.
The notation has been borrowed from [16] who classified the (anti-)self-dual calibrations
in R8, of which these are examples.

Each one in turn is associated to a certain self-dual calibratidkPohet us choose an
oriented basis; for R® and lety; denote the canonical dual basis. We will use the notation
whereeijjke = ¢; A ej A ex A eg and similarly forgjy,. In addition let

O™ = Bijce + * Bijke

be the manifestly self-dual extensionégk,. Consider the following three self-dual forms

Wiay) = 012344 1912564 191467 _ 11368
W) = 012344 391256 _ 191278 4 191357 4 191467 _ 11368, 11458
Wag) = 01234 4 191256 _ 151368 4 11458 ©
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As shown in [16] these forms have unit comass. Itis clear from their explicit expressions
that the 4-planei234is calibrated by each of them. These forms are left invariant by the
following subgroups of S@

S S S
K1 =Sp; - (Spy, x Spy) = O X SALX SR,

7o
S S U
K(392)=Sp.l.(sp_|_XU1)E ( p_]_XZS_LX l)’
S U IS
K33 =Sp - (U1 x Sp) = ( plXZ;X p.l.)’ ©

which are all subgroups of the §18p, = (Sp; x Sp,)/Z» subgroup which leaves invariant
the quaternionic form

® = 91234_,’_ %91256+ :_1301278+ %01357_ %91368+ %91458+ %914677

which also calibrateg;234 This shows that these geometries are subgeometries of the
quaternionic geometrg (®) = Gy (1]2). As shown in [16], the Grassmannia@$W¥ s ;))
coincide with theX 3 ; orbits ofe1234 Computing the intersection of the 9SOy C SGs
isotropy subgroup of1234 with the K3 ;y and factoring out common subgroups, we obtain
the following description for the Grassmannians

Sp, x S
G(¥a 1) = QLS+P1Pl ~ G4 = 58,

S
G(W@32) = U_T =~ G(13) = §2,

G(W@a1)=Up = G2 = st

5. The eight-dimensional geometries in detalil

In this section we will go in more detail through the eight-dimensional geometries in
Table 1 — i.e., the subgeometries 614|8). There are nine such geometries: Cayley,
complex (two kinds), quaternionic, special Lagrangian, complex Lagrangian, as well as the
(3, i) subgeometries of the quaternionic geometry. All these geometries share the property
that they are calibrated by self-dual 4-formsRf. The strategy in this section is the
following. We fix a given 4-plane if£® and we will describe the orbits of this plane under
different subgroups of S§In many cases, these subgroups will be determined uniquely by
specifying a certain structure (complex, quaternionic, etd@fimnhich it leaves invariant.

5.1. Notation and basic strategy

We will let{e;} fori = 1,2, ... , 8 be an oriented orthonormal basis E%; and introduce
the shorthand notatiafy.... = ¢; Ae; A --- Aeg. This choice of basis allows us to identify
[E8 with its dual, and forms with polyvectors. Our reference oriented 4-plane will 6.

Its SGs-isotropy K is isomorphic to S@ x SOy, the first factor acting on the span@bza
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and the second on the spanegf;s The Grassmannian of oriented 4-plane&fis then
the SG-orbit of 1234,

SG
SOy x SO
For every subgrou C SGOg, the G-orbit of e1234is a subset of the Grassmannian which
is itself isomorphic to a coset space,

G
GNK’

G(4|8) = SOz - e1234 =

G418) D G -e1231=

In what follows we will specify the groug in terms of invariant structures di?.

Itis wellknown that a complex structure determines an Sibgroup of S@which shares
its maximal torus with a Spinsubgroup. Also a quaternionic structure determines gn Sp
subgroup of S@ This Sp subgroup is nothing but the intersection of the;Subgroups
corresponding to each of the three complex structures in the quaternionic structure. A
quaternionic structure allows us to think Bf asHP. A given splitH? = He His
preserved by an §px Sp; subgroup of the Sp and this Sp x Sp; subgroup in turn
determines a diagonal $pubgroup, whose maximal torus definessasubgroup. Starting
with different complex structures and some extra structure along the way, we will therefore
be able to construct all the geometries of interest.

5.2. A guided tour

We start, following [16], by introducing a convenient notation for complex structures in
[E8. By a complex structure

1 35 7
I=(2468>’ %

we mean thaf e1 = e, [ ex = —eq, I e3 = ey, €tc. Each complex structure determines a
“Kahler” 2-form, which in this case is given by

W] = e12 + €34 1 es6 + €78,
which in turn defines a self-dual 4-form, called the K&hler calibration:

% w? — 1234 1256 1278 8)
where as above we have introduced the explicit self-dual 4-forms

M = ejjkl + *eijk -

A complex structurd also defines a special Lagrangian calibrationin the following
way. We start by defining the following complex vectors:

i =ez—1++v—ley
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fori = 1,2,3,4. They have the virtue that they are eigenvectord @&nd therefore
“diagonalise” the Kahler form:

4
wr = 2lm Zé“i AN

i=1

The special Lagrangian calibratiayy is then defined as the following real 4-form:

A1 =Re(§1 A L2 A L3 A La),
expanding to

A, = o1357_ 1368 _ 1467 _ 1458

which is manifestly self-dual. Notice that; does not calibrate; 234 This is to be expected
because a plane cannot be both complex and Lagrangian (hence totally real) relative to the
same complex structure.

Therefore we choose a second complex strucfudefined by

313y

Its Kéhler form is given byv; = e18 + €27 + e36 + e45, which squares to

%w3 — 61278—‘1- 61368+ 61458. (10)

The special Lagrangian form is given by
Ay = 1234 (1256 _ 1357 1467 (11)

which clearly calibrates; 234 Whereas the special Lagrangian calibrathonis SUg-invariant,
the Kahler calibration}aﬁ is actually Ui-invariant. Nevertheless, the centre of, being
generated by the complex structufeitself, stabilises the plane, whence, just as for the
special Lagrangian Grassmannian, the complex Grassmannian is;ari8t

Now consider the combination

1.2
QJ:AJ—za)J.

As shown in [26], this is a Cayley form and is left invariant by the Sinbgroup of S@
which contains (and shares the same maximal torus with) thel&lving J invariant. In
our case§2; expands to

Q — 1234 ,1256_ 1278 _ 1357 _ 1368 _ 1458 | 1467 (12)

from which we see that it calibratesyzs.
The two complex structuresandJ defined above anticommut&: = IJ = —JI, where

1 2 3 4
KZ(—? 8 -5 6)’ 13)
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correcting a typo in [16]. Thereford, J, K} define a quaternionic structure @3. The
intersection of the Sk subgroups corresponding to the three complex structures is an
Sp, subgroup of S@. Given an Sp subgroup it gives rise to a family of 24 quaternionic
structures: all possible reorderings and consistent sign chandésJink}. The Kahler

and special Lagrangian calibrations for each of the complex structures in the quaternionic
structure satisfy a number of useful identities:

1.2

Ap = F0k — %w§ Ay = w? - %w% Ax =Ar+Ay. (14)

NI

A useful way to construct new calibrations out of old ones is to tadevexlinear
combinations. By this we mean a linear combinafidpa; C;, where eacld’; is a calibration
anda; > 0 with ), a; = 1. Such a linear combination is automatically a calibration
and moreover its Grassmannian is the intersection of th@rassmannians. Becauses,
belongs to both the complex Grassmannian correspondiharid to the special Lagrangian
Grassmannian correspondingfpwe can take the following convex linear combination:

= %w? + %AJ,
which expands to

== 61234 1256 , 11278 %61357 1 1467. (15)

+e + 5e + 5e

Its Grassmannian consists of those planes which are complex with respeandcspecial
Lagrangian with respect td. The resulting geometry is called complex Lagrangian. The
same geometry arises as the calibrated geometry of the convex linear combination

[
Il

'=1A;+ Ak,
which expands to

o — 1234

+ 61256 _ %61357 _ %81368 _ %61458 1 1467. (16)

+ 26
The E’-Grassmannian consists of planes which are special Lagrangian with respect to both
J andK. ltis not hard to show that th&’-and E-geometries agree.

Indeed, it is enough to show that&fis special Lagrangian with respect fo thené¢ is
special Lagrangian with respect 0 if and only if it is complex with respect té. Using
the fact that for any complex structure, the Kéhler calibras}aﬁ is identically zero on
the special Lagrangian Grassmann@gA ), and the first identity in (14), it follows that
Ay and %w% agree onG(A ). Therefore if a plan& in G(Ay) is also inG(Ag) then
102 (¢) = 0, whenceA(§) = 0 so thatt € G(30?). Similarly if £ is in G(30?), then
A[(§) = 0 whence}w? (£) = 0 andt € G(Ak).

A useful convex linear combination of calibrations is the quaternionic calibration. Given
a quaternionic structurd, J, K}, we can define a quaternionic 4-form

O, 1K) = %(a)? —i—wi +a)§()

Being a convex linear combination of Kahler calibratio®s; ; k) is also a calibration
whose Grassmannian consists of planes which are complex with respect to each of the
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complex structureg, J and K. For this reasor234, being a special Lagrangian plane
relative toJ cannot be quaternionic relative ®. We remedy this by defining another
complex structure

p_(Lt 2 5 6
3 -4 7 -8)°
which also anticommutes with Therefore{l’ = I, J/, K’ = I' J'} defines a quaternionic
structure, with quaternionic for® = ©y;. . k) given by

O — 1234 % 1256 1 % 1278 % #1357 _ % 1368 % 1458 % 1467 (17)
which now clearly calibrateg; >34 As in the case of the Kéhler calibratiod, is actually
invariantunder Sp Sp,; but because the $factor is generated by the quaternionic structure
itself, the quaternionic Grassmannian is actually the-@pit of e1234

In contrast to a quaternionic structure, which consists of two anticommuting complex
structures, let us consider twommutingcomplex structured: defined in (7) and” defined

by
, (1 3 5 7
ro(2 38 )

Let us consider the self-dual form (again correcting a typo in [16])

Y= %w% — %w?,, = 1?34 4 1256 = (e15 + e78) A (€34 + e56). (29)
In order to see that this form is a calibration, it is easiest to rewrite it as a convex linear
combination of special Lagrangian forms

Y =3As+ 3A,

whereJ is the complex structure in (9) ant!’ is given by

7 1 2 3 4
-8 -7 6 5)°

which corrects yet another typo in [16]. The complex structuraadJ” are also commut-
ing. Moreover,I” andJ” anticommute, whencl, J, K = 13}y and{I/”, J", K" = 1"J"}
are two commuting quaternionic structures.

From the product form oE in (19), we see that thE-planes are products of a complex

. . 1 7 .

plane in the span afiy7grelative tol; = (2 8) and a complex plane relative fo =

(Z 2) in the span okass6 Equivalently? =-planes are products of a special Lagrangian

2This exemplifies the fact that 2-planeshift which are complex relative to a K&hler calibratiep, are special
Lagrangian relative to\ ;, where/, J, and K = |J defines a quaternionic structure. This is because of the
isomorphism SUY = Sp;, so that the SW which leaves/ invariant actually leaves invariant a quaternionic
structure.
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plane relative ta/; = (; ;) in the span oé127gand a special Lagrangian plane relative

toJo = (2 g) in the span obs456 X is invariant under an &Jx U, subgroup of S@.

The centre stabilises 234 — in fact, it stabilises the spans ef; and ez, separately —
whence thez-Grassmannian is the $ix Sp; orbit of e1234.

Finally we point out that the calibrations corresponding to(@e) geometries can be
constructed out of complex and quaternionic structures. In fact, we have the following
expressions

Vi) = 30 + %Qj, Wi = g@ - %w%,, Vi3 = %@ — %@,
whereJ andl” are the complex structures defined by (9) and (18), respectively, and where
® =©,; j ¢ given by

(:) — —61234— %612564— %612784- %613574- %61368_ %614584- %61467,

is the quaternionic calibration corresponding to the quaternionic structure generated by
[ =1"in(18) and

j_ 1 25 6
“\3 4 7 8)°
6. Generalised self-duality

Every (constant coefficient) 4-form in E8 defines an endomorphism of the space of
2-forms:

2 2
¢: NE'—> A\E. o «(pAro). (20)
Explicitly, if ¢ = Y, _; i ¢ijieija andw = Y-, _ ;wjej then

(@) = Y ik K.
k<l
This expression clearly shows thatis traceless, and symmetric under the natural inner
product

(o, B) = *(@ A *B) = > _aij Bi
i<j
on the space of 2-forms. This means thatill be diagonalisable. It5 is the SQ@-isotropy
subgroup ofp, then the eigenspaces @fare G-submodules of/\2 [E8, the 28or adjoint
representatiorog of SOs. A canonicalG-submodule is the adjoint representatipa sosg,
but of course there are othérsubmodules as well. One can ysto define a generalised
self-dualityfor 2-forms in eight dimensions by demanding that a 2-form belongs to a definite
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G-submodule ofog. This generalises self-duality in four dimensions, where we can take
¢ = x1,andp = xitself. The eigenspaces ¢fin this case are the subspaces of self-dual and
anti-self-dual 2-forms: corresponding to the adjoint representations of the tvMa&prs
in SOy = Sp; - Sp;.

Generalised self-duality plays a crucial role in the attempts to generalise the notion of
Yang—Mills instantons to higher dimensions [13,44]. Suppose that the Yang—Mills curvature
F(A) satisfies a generalised self-duality condition

¢ F(A) =cF(A) (21)
for somenon-zeraconstant. Then one easily computes
da*F(A) =c tda(xp A F(A) = c X(d* ¢ A F(A) +%¢ A da F(A)),

whence using the Bianchi identityy F(A) = 0 and provided thatxy is closed the
Yang-Mills equations of motion are satisfied automatically. In the geometries under con-
siderationy is self-dual and it is constant, so that it is co-closed.

In what follows we will discuss the possible notions of self-duality which are available
for each of the above geometries in eight dimensions, by analysing the eigenspace decom-
positions of the endomorphisngscorresponding to the different calibratiopsiescribed
above. We should remark however that despite the fact that a one-to-one correspondence
between geometries and generalised self-duality conditions is not expected — after all
self-duality depends crucially on the calibration, whereas as we saw above for the case of
the complex Lagrangian geometry, different calibrations can give rise to the same geometry
— nevertheless we will see that in some cases the geometry does determine the possible
generalised self-dualities.

6.1. Cayley geometry

The Cayley calibration (12) is invariant undesian,-subgroup of S@, under which the
28breaks up as

2_8_)269&-9

where the 2Xorresponds to the adjoint representatipin; C sog. It is well known that
the endomorphisr obeys the following characteristic polynomial:

Q-1)(EQ+31) =0,

whence we see that the eigenvalues are 1-aBdand (using tracelessness ©f with
multiplicities 21 and 7, respectively. Therefore there are two possible notions of self-duality,
and hence two possible extensions of the notion of instanton to eight dimensions. As shown
in [1], supersymmetry seems to prefer the definition of instanton which say#thgt
belongs tospin,; C sog: QF(A) = F(A). Gauge fields satisfying this relation are known
asoctonionic instantondor reasons explained in [19].
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6.2. Complex geometries
Let I denote the complex structure defined in Eq. (7), and’let %w? which is given

by (8). LetT denote the endomorphism of 2-forms defined frénaccording to (20). Its
characteristic polynomial is given by

(YT =30)(T =1)(T+1) =0,

whenceY hasthree eigenvalues 3, 1 andl. The multiplicities are 1, 12 and 15, respectively.
T is Uy invariant, and under JJ= (SUy x Uj1)/Z4 the 28breaks up as

28— 6,06 , 915 @1,

where the last two factors correspond to the adjoint representatiernsus ®uy C sog, and
where the first two factors together make up an irreduc#sdérepresentation of dimension
12. Therefore there is no accidental degeneracy in the eigenspace decomposifion of
in the sense that the group theory does not refine any further the eigenvalifes'bé
natural self-duality condition in gauge theory is the one which saysAla) belongs to
sus C sog. YF(A) = —F(A). These equations are the well-known Kéhler—Yang—Mills
equations, studied in [17,43].

6.3. Special Lagrangian geometry

Let A = A, denote the special Lagrangian form defined by Eq. (11). Itis invariant under
SU4 € SQGg, under which the 28reaks up as

28— 2601015

where now each & a real representation of QU Sping. The mapA on 2-forms obeys
the following characteristic polynomial:

(A +2D)A(A —21) =0,

whence it has eigenvalues?, 0 and 2. The multiplicities can easily worked to be 6, 16 and
6, which shows that the eigenvalue 0 is degenerate.

6.4. Complex Lagrangian geometry

Let E denote the complex Lagrangian calibration given by (15). The corresponding
endomorphisnt satisfies the characteristic polynomial

(é - gﬂ) (: - gﬂ) (: - %111) (: + %11) (: + gﬂ) =0,

so that it has five eigenvalue$; 3, 3, —3 and—3. The multiplicities are 1, 5, 6, 11 and
5, which again agrees witE being traceless. The eigenvalugg are now degenerate,
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a fact for which there seems to be no group-theoretical explanation, Sinc@recisely
Spy-invariant, and under Sghe 28breaks up as

28> 31®35® 10.

The three singlets corresponddg, w; andwg, and the 1C0corresponds to the adjoint
representation spcC sos.

Similarly, let 2’ be the other complex Lagrangian calibration defined by (16) and'let
be the corresponding endomorphism. It satisfies the characteristic polynomial

(&' +20) (& + 1)E/(E — 1)(& — 211) = 0.

The five eigenvalues-2, —1, 0, 1 and 2 have multiplicities 5, 2, 10, 10 and 1, respectively.
&’ is actually invariant under aniU Sp, = (U1 x Sp,)/Z; subgroup of S@ Under this
subgroup the 28reaks up as

28— 1,010,050 L®1l , B3 D5, (22)

The first two factors correspond to the adjoint representatiob sp, C sog. In terms of

real representations, # 1_, is an irreducible 2-dimensional representation ané%_,

is an irreducible 10-dimensional representation. Therefore there is no degeneracy in the
spectrum of2’.

6.5. Quaternionic geometry

The linear may® associated to the quaternionic 4-foérin (17) obeys the characteristic
polynomial

G +10)(6-31) (6-51) =0,

so that it has three eigenvaluesi, % andg. The multiplicities are 10, 15 and 3, respec-
tively, reiterating the fact tha is traceless. The degeneracy of the eigenvalues is easily
explained if we remark tha is actually invariant under the maximal subgroug Sgp, =

(Sp, x Spy)/Z, of SGs, under which the 28lecomposes into three factors as

28— 3 Dae L1035,

the first two factors corresponding to the adjoint representatioresgp, C sos. The
corresponding self-duality equations for Yang—Mills fields were originally studied, in the
context of quaternionic Kéhler manifolds, in [20,32].

6.6. Sub-quaternionic geometries
Finally letus consider the self-dual forms defined by (5).\zetienote the endomorphism

of 2-forms defined by the calibratioli(z ;). These maps obey the following characteristic
polynomials:
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Table 2

Geometries omitted from Table 1

(pln) GroupG Isotropy H GeometryG/H Fractionv
(5110 U x SU; ? ? 3

(5/10) Uy {1} G(1]2)? i

(U1 — 3D (¥1 - 3D (P1 + 3D (1 + 31) =0,
(@ — L (2 — 200 + ) (2 + (b + 20) =0,
(W3 — 30 (V3 — 3D W3(Ws + 30) (3 + 31) = 0.

The multiplicities of the eigenvalues are given as follows:$arthe eigenvalues ar, 3,

—2, and—3 with multiplicities 3, 12, 9 and 4, respectively; fdr, the eigenvalues arg,

3,-% -1land-2 and—%zwith multiplicities 3, 9, 9, 6 and 1, respectively; and fbg the
eigenvalues aré, 2, 0, —5 and—3 with multiplicities 3, 6, 10, 6 and 3, respectively. The
forms ¥ 3 ;) are invariant with respect to the subgroupg ;, of SGs given in Eq. (6). As
mentioned above, these groups are subgroups of theSp isotropy of the quaternionic

form © in Eq. (17). In fact, the first Spfactor in K (3 ;) is precisely the same as the one

in Sp, - Sp,. All eigenspace decompositions are degenerate for these three groups. As an

example, let us work out th@, 1) geometry. UndeK 3 1) the 28breaks up as
28— (11391318281 He 1226322,

which shows that the% eigenvalue is degenerate. Similar considerations hold for the (3,
2) and (3, 3) geometries. The generalised self-dual Yang—Mills equations have not been
studied for these geometries. They may provide an interesting refinement to the self-dual
Yang—Mills equations in quaternionic Kahler geometry.

7. Conclusion

In this paper we have presented a survey of some of the calibrated geometries which have
occurred in recent studies on the local singularity structure of supersymmetric fivebranes in
M-theory [2—4]. Some of these geometries appeared explicitly in [22,23] and implicitly in
some earlierwork [8,37,40,42]. Calibrated geometries have also appeared in related contexts
in other papers [5,6,9,24,38,41]. Calibrated geometry is therefore beginning to emerge as
the natural language in which to phrase geometric questions in the study of branes. An
appropriate slogan might liwane geometry is calibrated geometry

Not all geometries which have appeared in our work have been showcased here. Our
choice reflects the present level of knowledge in this topic. We have omitted two of the
subgeometries af (5/10) which were obtained in [2], because we were not able to identify
them. They are summarised in Table 2 below. The systematic study of the faGég|of
has alas stopped short of the interestfn@h|10) case: only partial results are known for
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G (4]8) and very little indeed fon > 8. It is hoped that this survey might help to rekindle
the interest in this problem.

Finally, it should be mentioned that the calibrated subgeometries of the Grassmannians
G(p|n) are far richer than what has been surveyed in this paper. We have only looked
at geometries defined tgupersymmetribrane configurations; whereas other calibrated
geometries describe non-supersymmetric configurations whose study might still be phys-
ically interesting, since they correspond to local singularities of minimal submanifolds,
which presumably still give rise to stable states.
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