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Abstract

We present a survey of the calibrated geometries arising in the study of the local singularity
structure of supersymmetric fivebranes in M-theory. We pay particular attention to the geometries
of 4-planes in eight dimensions, for which we present some new results as well as many details of
the computations. We also analyse the possible generalised self-dualities which these geometries
can afford. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent developments suggest that the natural language in which to phrase the study of
intersecting branes is that of calibrated geometry. This has proven effective both in the
description of their singularity structure [2–4,23] as in the study of the geometry of branes
within branes [22]. In our recent work [2–4] on the singularity structure of intersecting
branes, which continues the approach laid out in [37,42], we encountered a number of
calibrated geometries, not all of which are well known. We believe that it could be useful
to present a detailed survey of these geometries in the present context. This is one of the
purposes of the present paper. Manifolds admitting special geometries of the kind described
here also admit generalisations of the notion of self-duality. In the context of gauge theory,
these generalised self-duality give rise to higher-dimensional generalisations of the notion
of instanton. We think it useful also to work out the possible generalisations of self-duality
that these geometries give rise to.
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This paper is organised as follows. We start in Section 2 by explaining what is meant by a
geometryin this context and how to translate between its local and global (for lack of a better
name) descriptions. Then in Section 3 we will explain how a configuration of intersecting
branes gives rise to a geometry, and present a list of all the known geometries which arise
in this way. Section 4 is devoted to a case-by-case description of each of these geometries.
Section 5 presents a detailed “guided tour” of the different eight-dimensional geometries.
The calculational details presented in this section might be of some help to people working
in this topic. In Section 6 we explore the different generalisations of self-duality which
these calibrated geometries afford. For some of the less common geometries, these results
are new. Finally in Section 7 we make some concluding remarks.

2. What is meant by a geometry?

Generally speaking, a geometry is some sort of structure we endow a manifold with.
Traditionally a geometry is specified through the existence of certain tensor fields on the
manifold. Many well-known geometries arise in this way. For example, a metric gives rise
to Riemannian geometry, a closed non-degenerate 2-form to symplectic geometry, and a
complex structure gives rise to complex geometry. We can add more structure to one or more
of these and obtain many of the geometries which have taken centre stage in recent times:
Kähler, hyperkähler, quaternionic Kähler, etc. This way of defining a geometry often goes
hand-in-hand with a reduction of the structure group of the frame bundle. On a differential
n-manifold without extra structure, the frame bundle is a principal GLnR bundle. With
the introduction of a metric, we can consistently restrict ourselves to orthonormal frames,
and in effect reduce the structure group to On. Similarly, if n = 2m, a complex structure
allows us to consider complex frames so that the structure group reduces to GLmC. More
generally, aG-structure on a manifold is a reduction of structure group of the frame bundle to
G ⊂ GLnR, so that one can choose local frames which areG-related. Not every manifold
admits anyG-structure: there might be topological obstructions. For example, although
every manifold admits a metric and hence an On structure, unless the manifold is orientable
it will not admit an SOn structure.

A common way to reduce the structure group toG ⊂ On is via a metric whose holonomy
lies inG; although not allG ⊂ On can be so realised, unless one simultaneously allows
for torsion in the metric connection. Given a Riemannian manifoldM whose metric has
holonomyG, the holonomy principle [10] guarantees the existence of privileged tensors on
M corresponding to those (algebraic) tensors which areG-invariant. For example, this lies
at the heart of the equivalence between the two common definitions of a Kähler manifold:
as a Riemannian 2m-dimensional manifold with Um holonomy, or as a Riemannian mani-
fold with a parallel complex structure — the complex structure and the metric both being
Um-invariant tensors. This way of specifying a geometry has played an important role in
superstring theory, via the study of supersymmetric sigma models particularly.

More recently, however, with the advent of branes, another way of specifying a geometry
has become increasingly relevant. Instead of using the existence of tensorial objects or of
reductions of the structure group, one specifies a geometry on a manifold by singling out a
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special class of submanifolds. For example, one can talk about minimal submanifolds of a
Riemannian manifold, or about complex submanifolds of a complex manifold. In fact, in a
Kähler manifold these two kinds of submanifolds are not unrelated: complex submanifolds
are minimal. The theory of calibrations provides a systematic approach to understanding
this fact and allows, in addition, for far-reaching generalisations of this statement. In order
to facilitate the discussion it will be necessary to first introduce a few important concepts.

2.1. Submanifolds and Grassmannians

LetN be ap-dimensional submanifold of ann-dimensional manifoldM. At each point
x ∈ N , the tangent spaceTxN toN is ap-dimensional subspace of the tangent spaceTxM.
In a small enough neighbourhoodU of x, we can trivialise the tangent bundle ofM. This
means essentially that we can identify the tangent space to any point inU with Rn. Now
consider those pointsy inU which also lie inN . Under this identification, the tangent space
TyN of N at y will be identified with ap-plane inRn. This defines a map fromN ∩ U to
the space ofp-planes inRn. Spaces of planes are generically calledGrassmanniansand
will play a central role in the following discussion, so it pays to take a brief look at them
before going further.

It is convenient to identifyp-planes with certain types ofp-vectors. The identification runs
as follows. Letπ be ap-plane inRn. Lete1, e2, . . . , ep be a basis forπ . Then thep-vector
e1 ∧ e2 ∧ · · · ∧ ep is non-zero. However, if we choose a different basise′1, e′2, . . . , e′p
for π , then we generally end up with a differentp-vectore′1 ∧ e′2 ∧ · · · ∧ e′p. Of course,
both p-vectors are proportional to each other, the constant of proportionality being the
(non-zero) determinant of the linear transformation which takes one basis to the other.
Conversely, given a non-zerop-vectorv1 ∧ v2 ∧ · · · ∧ vp, we associate with it thep-plane
π spanned by the{vi}, with the proviso that as above, proportionalp-vectors give rise to
the samep-plane. We can eliminate the multiplicative ambiguity by picking a privileged
p-vector for each plane. This can be done by introducing a metric inRn and considering
only oriented planes. We will reflect this fact by saying that we consider orientedp-planes
in the Euclidean spaceEn.

Let G(p|n) denote the Grassmannian of orientedp-planes inEn. As we now show it
can be identified with a subspace of the unit sphere inE

(np). Indeed, given an oriented
p-planeπ , let e1, e2, . . . , ep be an oriented orthonormal basis and consider thep-vector
e1∧e2∧· · ·∧ep ∈ ∧p

En, which we will also denoteπ consistently with the identification
we are describing. The norm of anyp-vectorv1 ∧ v2 ∧ · · · ∧ vp is given by

‖v1 ∧ v2 ∧ · · · ∧ vp‖ = |det〈vi, vj 〉|.
This norm extends to a metric on

∧p
En, which turns it into a Euclidean spaceE(

n
p). It

follows thatπ has unit norm, so that it belongs to the unit sphere inE
(np). Conversely,

every simple (i.e., decomposable into a wedge product ofp vectors) unitp-vectorπ =
e1 ∧ e2 ∧ · · · ∧ ep ∈ ∧p

En defines an orientedp-plane with basise1, e2, . . . , ep. In other
words,G(p|n) can be identified with a subset of the unit sphere inE

(np), so that it is a
compact space. This can also be understood from the fact that the GrassmannianG(p|n)
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is acted on transitively by SOn. Indeed it is not hard to see that the isotropy consists of
changes of basis inπ and its perpendicular(n− p)-planeπ⊥; whence it is isomorphic to
SOp × SOn−p. This means that the Grassmannian is a coset manifold:

G(p|n) ∼= SOn
SOp × SOn−p

∼= G(n− p|n).

2.2. Geometries and Grassmannians

As mentioned above, a geometry can be specified by singling out a class of special sub-
manifolds. For example, one could consider submanifolds whose tangent spaces belong to
a certain subset of the Grassmannian of planes. These give rise to the so-calledGrassman-
nian geometries. A special type of subset of the GrassmannianG(p|n) are those sets which
correspond to the orbit of a plane under a subgroup of SOn. It will turn out that all the
geometries that we will encounter will be of this form.

For example, suppose thatn = 2m. Then we could consider complexk-dimensional
submanifolds; i.e.,p = 2k. The tangent subspaces to these submanifolds arek-dimensional
complex subspaces ofCm ∼= Rn. All the tangent planes belong to the Um ⊂ SOn orbit
of any one of the planes. The resulting orbit is the complex GrassmannianGC(k|m) of
k-dimensional complex planes inCm. It is not hard to see that

GC(k|m) ∼= Um
Uk × Um−k

∼= SUm
S(Uk × Um−k)

,

so that, in fact, the planes belong to the same SUm orbit.
Similarly if n = 4`, we can consider quaternionic subspaces ofH` ∼= Rn. They necessar-

ily have dimensionp = 4j . The GrassmannianGH(j |`) of quaternionic planes correspond
to the orbit of a plane under Sp` ⊂ SOn, so that

GH(j |`) ∼= Sp̀

Spj × Sp̀ −j
.

Other examples are possible, and we shall discuss them below. For now let us simply
point out the fact that for the complex and quaternionic Grassmannians, the subgroups SUm

and Sp̀ of SOn are such that they (or their lifts to subgroups of Spinn) leave some spinors
invariant. This is intimately linked to supersymmetry and will also be the case for the other
examples we will encounter. We now turn our attention to another way to single out subsets
of the Grassmannian.

2.3. Calibrations

Calibrations will provide us a tool with which to specify subsets (faces, actually) of the
Grassmannian of planes. The geometries which are obtained in this fashion are known as
calibrated geometries. The foundations of this subject are clearly explained in [26], and a
shorter but lucid exposition can be found in [35].
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Let ϕ ∈ ∧p
(En)∗ be a (constant coefficient)p-form onEn. It defines a linear function

on
∧p

En, which restricts to a continuous function on the GrassmannianG(p|n). Because
G(p|n) is compact, this function attains a maximum, called thecomassof ϕ and denoted
‖ϕ‖∗. If ϕ is normalised so that it has comass 1, then it is called acalibration. LetG(ϕ)
denote those points inG(p|n) on whichϕ attains its maximum.G(ϕ) is known as the
ϕ-Grassmannian, and planesπ ∈ G(ϕ)are said to becalibrated byϕ. The subset∪ϕG(ϕ) ⊂
G(p|n), where the union runs over all calibrationsϕ, defines thefaces ofG(p|n). The name
comes from the fact that if we think ofG(p|n) as a subset of the vector spaceE

(np), then
G(ϕ) is the contact set ofG(p|n) with the hyperplane{ξ ∈ E

(np)|ϕ(ξ) = 1}. Now, because
ϕ is a calibration,ϕ(ξ) ≤ 1 and henceG(p|n) lies to one side of that hyperplane.

Computing the comass of ap-form is a difficult problem which has not been solved but
for the simplest of formsϕ, those which have a high degree of symmetry or those which can
be obtained by squaring spinors. Determining the faces of the Grassmannian has proven
equally difficult and has only been achieved completely in the lowest dimensions. The
determination of the faces of the GrassmannianG(p|n) is not an easy problem whenever
p is different from 1, 2,n − 2, orn − 1. To this day, only the casesn = 6 [14,27,34] and
n = 7 [28,34] have been fully solved, whereas there are some partial results forn = 8 [16].
In the study of static fivebranes in M-theory it is the casen = 10 that is needed.

A p-submanifoldN of En, all of whose tangent planes belong toG(ϕ) for a fixed
calibrationϕ, is said to be acalibrated submanifold. A calibrated submanifoldN has
minimum volume among the set of all submanifoldsN ′ with the same boundary. This is
because

volN =
∫
N

ϕ =
∫
N ′
ϕ ≤ volN ′,

where the second equality follows by Stokes’ theorem. Calibrated submanifolds constitute
a far-reaching generalisation of the notion of a geodesic. Indeed, the Grassmannian of
oriented linesG(1|n) is just the unit sphereSn−1 ⊂ En, whose faces are obviously points.
Hence the tangent spaces of a one-dimensional submanifoldL belong to the same face if
and only ifL is a straight line. Notice that there is a duality betweenp-dimensional and
p-codimensional submanifolds; in fact, ifϕ is a calibration so is?ϕ. Hence hyperplanes in
En are also (locally) volume-minimising.

This theory is not restricted to constant coefficient calibrations inEn. In fact, we can
work with d-closed formsϕ in any Riemannian manifold(M, g). The comass ofϕ is now
the supremum (over the points inM) of the comasses at each point. IfM is compact, this
supremum exists. A calibration is now ad-closed form normalised to have unit comass; or
equivalent one which satisfies

ϕx(ξ) ≤ vol ξ for all oriented tangentp-planesξ atx.

Notice that there may be points inM for which theϕ-Grassmannian is empty. The same ar-
gument as before shows that calibrated submanifolds are homologically volume-minimising.
Of course, this crucially necessitates thatϕ bed-closed.
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If an oriented Riemanniann-manifold has reduced holonomy, meaning a proper
subgroupG of SOn, then the holonomy principle guarantees the existence of parallel
(henced-closed) forms corresponding to theG-invariants in the exterior power of the
tangent representation. It turns out that in many (if not all) cases, the parallel forms are
calibrations giving rise to interesting geometries. Theϕ-Grassmannian associated to a
G-invariant formϕ contains, and in many cases coincides with, theG-orbit of any one of its
planes.

3. The (local) geometry of intersecting branes

In this section we summarise the results of [2–4] and tabulate the different geometries
that were found. These geometries will be described in more detail in Section 4.

3.1. From branes to geometry

Branes can be understood as certain types of solutions to the supergravity equations
of motion. These solutions are characterised by their invariance (at least locally) under a
(p+ 1)-dimensional super-Poincaré subalgebra. The solutions describe the exterior space-
time to the worldvolume of ap-dimensional extended object: the brane. The brane therefore
corresponds to a(p+1)-Lorentzian submanifold, with possible self-intersections. In many
cases these submanifolds are minimal and just as for minimal immersions [29,30,33,36]
one can ask what is the local singularity structure of a brane solution.

For definiteness we will only discuss fivebranes in 11-dimensional supergravity in this
note. It is clear that this approach generalises to generalp-branes in this and other super-
gravities; although it may be possible to treat more general cases from this one by using
duality transformations.

Let B be the worldvolume of a fivebrane in an 11-dimensional spin manifoldM. Fix
a pointx ∈ B. Choosing an orthonormal frame1 e0, e1, . . . , e9, e\ for the tangent space
TxM to M at x, we can identifyTxM with 11-dimensional Minkowski spacetimeE10,1.
The tangent spaces (ifx is a singular point of the immersion then there is more than one)
to the worldvolume of a fivebrane passing throughx define a subset of the Grassmannian
G(5,1|10,1) of time-oriented (5, 1)-planes inE10,1, which analogously to the Euclidean
case, is a coset space

G(5,1|10,1) ∼=
SO↑

10,1

SO↑
5,1 × SO5

,

where SO↑ stands for the connected component of the identity. The requirement of super-
symmetry constraints which subsets of this Grassmannian can the tangents to the branes
belong to.

1 Following [42] we employ the symbol\ (pronounced ‘ten’) to refer to the tenth spatial coordinate.
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3.2. Supersymmetry

Let Cl1,10 be the Clifford algebra associated toE10,1, but with the opposite norm. In other
words, ifv ∈ E10,1 then its Clifford square in Cl1,10 is given by

v · v = +‖v‖21,

where‖v‖2 ≡ −(v0)2 + (v1)2 +· · ·+ (v\)2. As associative algebras Cl1,10 ∼= Mat32(R)⊕
Mat32(R), whence it has two inequivalent irreducible representations, each real and 32-
dimensional. They are distinguished by the action of the volume element, which takes the
values±1. Fix one of these irreducible representations1 once and for all — the choice is
immaterial because they are both equivalent under Spin10,1 ⊂ Cl1,10. Every (5, 1)-planeπ
in E10,1 defines a subspace

1(π) ≡ {ψ ∈ 1|π · ψ = ψ},

where · stands for Clifford action and where we have used implicitly the isomorphism
of the Clifford algebra Cl1,10 with the exterior algebra. The subspace1(π) is non-zero.
In fact, becauseπ has unit norm, so thatπ · π = 1, and zero trace,1(π) ⊂ 1 is 16-
dimensional.

If π1 ≡ π, π2, . . . , πm arem (5, 1)-planes, then we say that the configuration∪mi=1πi is
supersymmetricif and only if

1

(
m⋃
i=1

πi

)
≡

m⋂
i=1

1(πi) 6= {0}.

Moreover, such a supersymmetric configuration is said to preserve a fractionν of the
supersymmetry, whenever

32ν = dim1

(
m⋃
i=1

πi

)
.

A priori ν can only take the values132,
1
16,

3
32, . . . ,

1
2; although only the following fractions

are known to occur:132,
1
16,

3
32,

1
8,

5
32,

3
16,

1
4 and 1

2. From the full solution [4,37] of the two
fivebrane problem it follows that there are no configurations with fraction1

4 < ν < 1
2.

Therefore the only possible fraction which has yet to appear is7
32.

A braneB such that its tangents define a supersymmetric configuration is called asu-
persymmetric brane. An important problem in this topic is the classification of the possible
supersymmetric configurations of the so-called intersecting branes (see [21] for a recent
review and guide to the literature). Each such configuration gives rise to a subset of the
Grassmannian and, by the discussion in Section 2, to a geometry which, as we will see,
turns out to be calibrated. This follows from the correspondence between spinors and cali-
brations, to which we now turn.
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3.3. Calibrations and spinors

The relationship between spinors and calibrations is well documented. Although com-
puting the comass of a formϕ is generally a difficult problem, it simplifies tremendously
whenϕ can be constructed by squaring spinors. The cleaner results are in seven and eight
dimensions [25,31] and more generally in 8k dimensions [15]; but similar results can also
be obtained in 11 dimensions with Lorentzian signature [3]. Remarkably, it is the 11-and
eight-dimensional cases which arise in the study of intersecting branes [3,4].

3.3.1. Eight dimensions
Let us first discuss the eight-dimensional case. As an associative algebra, the Clifford

algebra Cl8 is isomorphic to the matrix algebra Mat16(R). This means that it has a unique
irreducible representation1 which is real and has dimension 16. Under the spin group
Spin8 ⊂ Cl8,1 breaks up as1+ ⊕1−, where each1± corresponds to spinors of definite
chirality. Letψ ∈ 1+ be a chiral spinor, and consider the bispinorψ ⊗ ψ̄ . It is an element
of Cl8 which, normalising the spinor appropriately, can be written as

ψ ⊗ ψ̄ = 1 +�+ vol, (1)

where� is a self-dual 4-form inE8. Now let ξ be a simple unit 4-vector inE8. Then it
follows from the expression of the bispinor that�(ξ)‖ψ‖2 = 〈ψ, ξ · ψ〉, where‖ψ‖2 =
〈ψ,ψ〉 is the norm relative to the natural Spin8-invariant inner product on1+. By the
Cauchy–Schwarz inequality, it follows that

�(ξ) = 〈ψ, ξ · ψ〉
‖ψ‖2

≤ ‖ξ · ψ‖
‖ψ‖ .

Becauseξ belongs to Spin8 ⊂ Cl8, ‖ξ ·ψ‖ = ‖ψ‖, whence�(ξ) ≤ 1 for all ξ . In other
words,� has unit comass; i.e., it is a calibration. It follows from this argument that the
plane defined by the 4-vectorξ is calibrated by� if and only if ξ · ψ = ψ .

What can one say about the�-Grassmannian? The isotropy of a chiral spinorψ ∈ 1+ is
a certain Spin+7 subgroup of Spin8, under which both1− and the vector representation of
Spin8 remain irreducible. This means that� is also Spin+7 -invariant, whence the Spin+

7 -orbit
of any planeξ in the�-Grassmannian will also belong to the�-Grassmannian. In fact, it
is not difficult to show that the Spin+7 -orbit is the�-Grassmannian, which in turn coincides
with the Grassmannian of Cayley planes. We will have more to say about this below.

3.3.2. Eleven dimensions
Now let1 denote one of the two irreducible representations of Cl1,10, and letψ ∈ 1 be

a spinor. Squaring the spinor we obtain on the right-hand side a 1-form4, a 2-form9 and
a 5-form8:

ψ ⊗ ψ̄ = 4+9 +8, (2)
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where byψ̄ ≡ −(e0 ·ψ)t we mean the Majorana conjugate. In this expression, the forms4,
9 and8 are a 1-, 2-and 5-form inE10,1, respectively. Under the orthogonal decomposition
E10,1 = E10 ⊕ Re0, the 5-form8 breaks up as

8 = e∗0 ∧3+2, (3)

where3 and2 are a 4-and a 5-form onE10, respectively. Now letξ be an oriented 5-plane in
E10 and consider the bilinear̄ψξ ·ψ . Using (3) and the definition of the Majorana conjugate,
one can rewrite this as

〈ψ, (e0 ∧ ξ) · ψ〉 = 2(ξ)Tr 1 = 322(ξ),

where we have introduced the Spin10-invariant inner product〈−,−〉 defined by〈χ,ψ〉 =
χ tψ . By the Cauchy–Schwarz inequality for this inner product, we find that

2(ξ) ≤ 1
32‖ψ‖ ‖(e0 ∧ ξ) · ψ‖. (4)

Becauseξ is a unit simple 5-vector,‖(e0 ∧ ξ) · ψ‖ = ‖ψ‖, whence

2(ξ) ≤ 1
32‖ψ‖2.

In other words, the comass of2 is given by 1
32‖ψ‖2, and a 5-planeξ is calibrated by2 if

and only if the (5, 1) planeπ = e0 ∧ ξ obeysπ · ψ = ψ , which is precisely the condition
thatψ belongs to1(π).

The nature of the2-Grassmannian depends on the isotropy group of the spinorψ . A
non-zero Majorana spinorψ of Spin10,1 can have two possible isotropy groups [11]: either
SU5 ⊂ Spin10, which acts trivially on a time-like direction which can be chosen to bee0,
or a 30-dimensional non-semisimple Lie groupG ∼= Spin7 n R9, acting trivially on a null
direction. In the former case, the 5-form2 is SU5-invariant and the2-Grassmannian will
contain the SU5-orbit of the planeπ . This orbit turns out to be the full2-Grassmannian,
which is the Grassmannian of special Lagrangian planes inE10. In the latter case,2 has the
form v∗ ∧ � where� is a Cayley calibration in an eight-dimensional subspaceV ⊂ E10

andv ∈ V ⊥ is a fixed vector perpendicular toV . In this case the2-Grassmannian agrees
with the�-Grassmannian, which is isomorphic to the Grassmannian of Cayley planes in
V ∼= E8.

3.4. Summary of results

We can summarise the foregoing discussion as follows. Given any supersymmetric con-
figuration ofM5-branes, the tangent planes{πi} at any given singular point belong to a
face of the Grassmannian: the intersection of the faces corresponding to all the spinors
ψ which belong to1(πi) for all i. We will call such a face of the Grassmannian, asu-
persymmetric face. The main problem in the study of the local singularity structure of
supersymmetricM5-branes is the determination of the supersymmetric faces of the Grass-
mannianG(5,1|10,1) of (5, 1)-planes inE10,1, and for each such face to determine the
fractionν of the supersymmetry which is preserved.
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The first attempt at solving this problem was by Ohta and Townsend [37] who, follow-
ing up the work in [42], classified the supersymmetric static configurations of a pair of
M5-branes. (Some earlier incomplete results can be found in [40].) The solution of the two
fivebrane problem was completed in [4], where we also considered fivebranes which are
moving relative to each other. The multiple brane problem is still open, but some partial
results can be found in [2–4,23]. As explained in [2,4], but see also [3,8,23], the supersym-
metric faces consist of planes which lie in the orbit of one of the planes under the action of a
subgroup of Spin10,1 which leaves invariant some subspace of1. For each such subgroupG
one can determine the fractionν of the supersymmetry which is preserved and the geometry
defined by its orbit in the face of the Grassmannian.

We can distinguish two cases: faces in which all planes share a common time-like direction
and faces in which all planes share a common light-like direction. The former correspond
to static brane configurations, whereas the latter correspond to branes in motion. Moreover,
as shown in [4], supersymmetric configurations of branes are obtained by null-rotating
(see, e.g., [39]) already supersymmetric configurations consisting of Cayley planes in eight
dimensions.

We summarise the known results in Table 1. Each of the geometries in the table is defined
as theG-orbit of ap-plane inEn. For each such geometry we also list the isotropy subgroup
H ⊂ G of the referencep-plane, as well as the type of (calibrated) geometry which one

Table 1
Some of the geometries associated with intersecting brane configurations, together with the fraction of the super-
symmetry which is preserved both for static and for moving branes

(p|n) GroupG IsotropyH GeometryG/H Fractionν

Static Moving

(5|10) SU5 SO5 SLAG5
1
32 –

(5|10) SU2 × SU3 SO2 × SO3 SLAG2 × SLAG3
1
16 –

(4|8) Spin7 (SU2)
3/Z2 Cayley 1

32
1
32

(4|8) SU4 SO4 SLAG4
1
16

1
32

(4|8) SU4 S(U2 × U2) GC(2|4) 1
16

1
16

(4|8) Sp2 U2 CLAG2
3
32

1
32,

1
16

(4|8) Sp2 Sp1 × Sp1 GH(1|2) 3
32

3
32

(4|8) Sp1 × Sp1 U1 × U1 (GC(1|2))2 1
8

1
16

(4|8) Sp1 × Sp1 Sp1 (3, 1) 1
8

1
32,

3
32

(4|8) Sp1 U1 (3, 2) 5
32

1
16,

3
32

(4|8) U1 {1} (3, 3) 3
16

3
32

(3|7) G2 SO4 Associative 1
16

1
16

(3|6) SU3 SO3 SLAG3
1
8

1
16

(2|6) SU3 S(U2 × U1) GC(1|3) 1
8

1
8

(2|4) SU2 SO2 SLAG2
1
4

1
8
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obtains. We also tabulate the fractions of supersymmetry both for static and (whenn ≤ 8)
moving branes. Some entries have more than one possible fractionν for moving branes.
These correspond to different but isomorphic subgroupsG. The static fraction depends only
on the conjugacy class ofG in Spin10, but the moving fraction is a more subtle invariant of
the configuration and depends intricately on howG sits in Spin8.

It may prove useful to explain one of the entries in detail. Let us consider for instance
the fourth row in the table. These configurations are obtained as follows. For static config-
urations, pick a (5, 1)-planeπ = e0 ∧ ξ , whereξ is a 5-plane ine⊥0 ∼= E10. The allowed
configurations consist of planesπ ′ = e0 ∧ ξ ′, whereξ ′ is in the orbit ofξ under a subgroup
G ∼= SU4.G leaves one direction invariant,v say, inξ , so that the planeπ can be written
asπ = e0 ∧ v ∧ ζ , whereζ is a 4-plane in the eight-dimensional subspace ofe⊥0 on which
SU4 acts irreducibly. All other planes will be of the formπ ′ = e0 ∧v∧ ζ ′ whereζ ′ is in the
G-orbit of ζ . The isotropy (inG) of ζ is a subgroupH ∼= SO4 and with a little more effort
one can recognise the subset of the Grassmannian as consisting of the special Lagrangian
4-planes. Those configurations will generically preserve1

16 of the supersymmetry. For mov-
ing branes one simply starts with a configuration of static branes, namely planes of the form
π ′ = e0 ∧ v ∧ ζ ′ whereζ ′ a special Lagrangian 4-plane, and performs an arbitrary null
rotation to each of the planes. Only null rotations along directions perpendicular to the plane
π ′ change the configuration, whence the resulting Grassmannian is a homogeneous bundle
overG/H with fibreR5. The generic configuration now preserves1

32 of the supersymmetry.

4. Some geometries associated with intersecting branes

We now start a case-by-case description of the geometries in Table 1. These geometries
are not new, of course, but some may not be well-known. Complex geometries are of
course classical, and to some extent so are quaternionic geometries. The special Lagrangian,
associative and Cayley geometries were discussed initially in Harvey & Lawson’s [26]
foundational essay on calibrated geometry. The complex Lagrangian geometry (at least
in dimension eight) as well as the other geometries associated to self-dual 4-forms are
discussed in [16].

4.1. Complex geometry

The complex geometry ofk-planes inCm ∼= R2m is defined by the Grassmannian
GC(k|m) ⊂ G(2k|2m). It is the SUm ⊂ SO2m orbit of a given real 2k-plane. Such planes
are calibrated by the properly normalisedkth power of the Kähler form

ω =
m∑
i=1

dxi ∧ dyi,

wherezi = xi + √−1yi are complex coordinates. It follows from Wirtinger’s inequality
(see, e.g., [18]) that the 2k-form (1/k!)ωk has unit comass and that its Grassmannian is
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precisely the Grassmannian of complexk-planes. The Kähler form is left invariant by a Um
subgroup of SO2m, whose intersection with the isotropy SO2k × SO2m−2k (in SO2m) of a
real plane is Uk×Um−k. Note however that the centre of Um acts trivially, whence factoring
it out, we can write

GC(k|m) ∼= SUm
S(Uk × Um−k)

.

In the study ofM5-branes we have the following Grassmannians appearing:GC(1|3),
GC(2|4) ∼= G(2|6), andGC(1|2)×GC(1|2) ∼= G(2|4).

4.2. Quaternionic geometry

ConsiderH` ∼= R4` and, on it, the quaternionic 4-form

2 =
∑̀
i=1

dxi ∧ dyi ∧ dzi ∧ dwi,

where a quaternionic vector has componentsqi = xii + yij + zik + wi1. Then results of
Berger [7] show that the 4j -form (6/(2j + 1)!)2j has unit comass, and the corresponding
Grassmannian is nothing but the GrassmannianGH(j |`) ⊂ G(4j |4`) of quaternionic
j -planes. This Grassmannian is acted on transitively by Sp` ⊂ SO4`, and the intersection
of Sp̀ with the isotropy SO4j × SO4`−4j of a real 4j -plane, is given by Spj × Sp̀ −j ,
whence

GH(j |`) ∼= Sp̀

Spj × Sp̀ −j
.

In the above table, it isGH(1|2) ∼= G(1|5) ∼= S4 which appears.

4.3. Special Lagrangian geometry

Special Lagrangian geometry is another geometry associated to SUm ⊂ SO2m. This
geometry is complementary to the geometry of complex planes inCm ∼= R2m. Indeed, it is
a geometry of totally real planes. Consider the forms

3(θ) = Re eiθ dz1 ∧ dz2 ∧ · · · ∧ dzm,

wherezi are the complex coordinates forCm introduced in Section 4.1 andθ ∈ S1. It is
shown in [26] that3(θ) has unit comass, so that it is a calibration. Its Grassmannian consists
of the so-calledspecial Lagrangianplanes. These planes are Lagrangian with respect to the
Kähler formω on Cm defined in Section 4.1: i.e., they are maximally isotropic relative to
ω. Notice however that the subset ofG(m|2m) consisting ofall Lagrangian planes (with
respect toω) is not theϕ-Grassmannian for anyϕ. Nevertheless, it is fibred over the circle
with fibres the special Lagrangian planes relative to3(θ), for θ ∈ S1. In other words,
every Lagrangian plane is special Lagrangian with respect to3(θ) for someθ . Notice that
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Um ⊂ SO2m doesnot preserve3(θ) now, since the centre shiftsθ ; but SUm does. Its
intersection with the isotropy SOm × SOm of anm-plane is the diagonal SOm, whence the
special Lagrangian Grassmannian SLAGm can be written as

SLAGm
∼= SUm

SOm
.

Notice that form = 2, special Lagrangian geometries can be identified with complex
geometries relative to a complex structure which is also left invariant by the same SU2

subgroup. This is because SU2 ∼= Sp1 actually leaves invariant a quaternionic structure
on H ∼= C2. Other special Lagrangian geometries which appear in the table are SLAG5,
SLAG4 ∼= G(3|6), and SLAG3.

4.4. Associative geometry

Associative and Cayley geometries are intimately linked to the octonions. There are many
constructions of the calibrations which define these geometries, but they are all in one way
or another related to the octonions. Let us therefore consider the 3-formϕ onR7 defined as
follows. We identifyR7 ∼= Im O with the imaginary octonions. The octonions are a normed
algebra, whence in addition to a multiplication· they also have an inner product〈, 〉. The
3-formϕ is defined by

ϕ(a, b, c) = 〈a, b · c〉

for all a, b, c ∈ Im O. We can choose a basisoi , i = 1, . . . ,7, for the imaginary octonions,
and canonically dual basisθi , relative to whichϕ can be written as

ϕ = θ125 + θ136 + θ147 − θ237 + θ246 − θ345 + θ567,

where we have used the shorthandθijk ≡ θi ∧ θj ∧ θk. Harvey and Lawson [26] proved that
ϕ is a calibration. Theϕ-Grassmannian consists of the so-calledassociativeplanes, which
are all constructed as follows. Leti, j, k generate any quaternion subalgebra ofO. Then the
3-planei ∧ j ∧ k is associative, and moreover all associative planes are constructed in this
way.

The group of automorphisms of the octonions isG2, and its action is such that it stabilises
Im O. It also preserves the inner product, whence it leavesϕ invariant. In fact,G2 can be
defined [12] as the subgroup of GL7R which leavesϕ invariant. The isotropy (inG2) of
an associative plane is isomorphic to an SO4 subgroup, which acts on ImO as follows. We
identify ImO with Im H ⊕ H and SO4 with theZ2 quotient of Sp1 × Sp1, with Sp1 the unit
imaginary quaternions. Thus ifg = (q1, q2) ∈ Sp1 × Sp1, then

g(a, b) = (q1 · a · q̄1, q2 · b · q̄1)

for a ∈ Im H andb ∈ H. Notice that theZ2 subgroup generated by(−1,−1) ∈ Sp1 × Sp1
acts trivially. Clearlyi ∧ j ∧ k is left invariant by SO4 and it is shown in [26] that SO4 is
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precisely the isotropy of this 3-plane. In summary, the associative Grassmannian is given
by

Associative∼= G2

SO4
.

4.5. Cayley geometry

The Cayley Grassmannian is the face exposed by a self-dual 4-form� in R8, which we
identify with O as before. Indeed, we can build� in terms of the associative 3-formϕ
defined above, in the following way. Consider the Hodge dualϕ̃ (in Im O) of ϕ:

ϕ̃ ≡ ?7ϕ = θ1234− θ1267+ θ1357− θ1456+ θ2356+ θ2457+ θ3467,

in the obvious notation. Thinking of̃ϕ as a 4-form inO, its Hodge dual is given byϕ ∧ θ8,
whereθ8 is the canonical dual form to1 ∈ O. We can now define a self-dual 4-form� in
O as follows:

�= ϕ̃ + ϕ ∧ θ8 = θ1234+ θ1258− θ1267+ θ1357+ θ1368− θ1456+ θ1478+ θ2356

−θ2378+ θ2457+ θ2468− θ3458+ θ3467+ θ5678.

As proven in [26],�has unit comass. It is known as theCayley calibration, and its calibrated
planes make up theCayley Grassmannian. Alternatively,� can be defined in terms of the
inner product onO and thetriple cross product

a × b × c = 1
2(a · (b̄ · c)− c · (b̄ · a))

as follows:

�(a, b, c, d) = 〈a × b × c, d〉.
It follows that the typical calibrated plane is of the form1∧ i∧ j∧k, wherei, j, andk = i · j

are the imaginary units in a quaternion subalgebra ofO.
The Cayley form� is invariant under a Spin7 subgroup of SO8, which acts transitively

on the unit sphere inO with isotropyG2. As in the associative case, Spin7 can be defined
as the subgroup of GL8R which leaves� invariant. It follows that Spin7 acts on the Cayley
Grassmannian. This action is transitive, with isotropy a subgroupH ∼= (Sp1×Sp1×Sp1)/Z2

which acts onO as follows. Ifg = (q1, q2, q3) ∈ Sp1×Sp1×Sp1 is a triple of unit imaginary
quaternions, then underO = H ⊕ H we have

g(a, b) = (q3 · a · q̄1, q2 · b · q̄1)

for a, b ∈ H. Notice that(−1,−1,−1) acts trivially, whence the action factors throughH .
ClearlyH leaves1 ∧ i ∧ j ∧ k invariant, and it is shown in [26] thatH is precisely the
isotropy of such a plane. In summary, the Cayley Grassmannian can be written as

Cayley∼= Spin7

H
.
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Notice that the Cayley Grassmannian is isomorphic toG(3|7). This is no accident, since
given any oriented 3-plane inR7, there is a unique Cayley plane inR8 which contains it.

4.6. Complex Lagrangian geometry

The complex Lagrangian geometry is a geometry of 2`-planes inR4`. Identifying R4`

with H`, determines a quaternionic structureI , J , andK = I J . The complex Lagrangian
planes are those planes which are complex relative toI , say, and Lagrangian relative toJ .
Let ωI denote the Kähler form relative toI , and3(0)J denote the special Lagrangian form
relative toJ with angleθ = 0. Then consider the sum

4 = 1
23

(0)
J + 1

2
1
`!ω

`
I .

One can show that4 is a calibration, whose Grassmannian consists of those real 2`-planes
which are complex relative toI and (special) Lagrangian relative toJ ; i.e., the complex
Lagrangian 2̀-planes. The quaternionic structure{I, J,K} determines an Sp` subgroup of
SO4`, which leaves4 invariant. Its intersection with the isotropy of a reference complex
Lagrangian plane is a Ùsubgroup, whence

CLAG`
∼= Sp̀

U`
.

Notice thatCLAG1 ∼= SLAG2 ∼= GC(1|2). Apart from this degenerate case, it isCLAG2 ∼=
G(2|5) which appears in the table. In this case, it is not hard to show that4 is actually
self-dual, as was the case for the Cayley, quaternionic and complex geometries of real
4-planes inR8 discussed above, and for the remaining three calibrations to be discussed
below.

4.7. Other geometries associated to self-dual 4-forms

It remains to discuss the three geometries labelled (3, 1), (3, 2) and (3, 3) in the table.
The notation has been borrowed from [16] who classified the (anti-)self-dual calibrations
in R8, of which these are examples.

Each one in turn is associated to a certain self-dual calibration onR8. Let us choose an
oriented basisei for R8 and letθi denote the canonical dual basis. We will use the notation
whereeijk` = ei ∧ ej ∧ ek ∧ e` and similarly forθijk`. In addition let

θ ijk` = θijk` + ? θijk`

be the manifestly self-dual extension ofθijk`. Consider the following three self-dual forms

9(3,1) = θ1234+ 1
2θ

1256+ 1
2θ

1467− 1
2θ

1368,

9(3,2) = θ1234+ 3
5θ

1256− 1
5θ

1278+ 1
5θ

1357+ 1
5θ

1467− 1
5θ

1368+ 1
5θ

1458,

9(3,3) = θ1234+ 1
3θ

1256− 1
3θ

1368+ 1
3θ

1458. (5)
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As shown in [16] these forms have unit comass. It is clear from their explicit expressions
that the 4-planee1234 is calibrated by each of them. These forms are left invariant by the
following subgroups of SO8:

K(3,1) = Sp1 · (Sp1 × Sp1)
∼= (Sp1 × Sp1 × Sp1)

Z2
,

K(3,2) = Sp1 · (Sp1 × U1) ∼= (Sp1 × Sp1 × U1)

Z2
,

K(3,3) = Sp1 · (U1 × Sp1)
∼= (Sp1 × U1 × Sp1)

Z2
, (6)

which are all subgroups of the Sp1 ·Sp2
∼= (Sp1×Sp2)/Z2 subgroup which leaves invariant

the quaternionic form

2 = θ1234+ 1
3θ

1256+ 1
3θ

1278+ 1
3θ

1357− 1
3θ

1368+ 1
3θ

1458+ 1
3θ

1467,

which also calibratese1234. This shows that these geometries are subgeometries of the
quaternionic geometryG(2) ∼= GH(1|2). As shown in [16], the GrassmanniansG(9(3,i))
coincide with theK(3,i) orbits ofe1234. Computing the intersection of the SO4×SO4 ⊂ SO8

isotropy subgroup ofe1234with theK(3,i) and factoring out common subgroups, we obtain
the following description for the Grassmannians

G(9(3,1))∼= Sp1 × Sp1

Sp1

∼= G(1|4) ∼= S3,

G(9(3,2))∼= Sp1

U1

∼= G(1|3) ∼= S2,

G(9(3,1))∼= U1 ∼= G(1|2) ∼= S1.

5. The eight-dimensional geometries in detail

In this section we will go in more detail through the eight-dimensional geometries in
Table 1 — i.e., the subgeometries ofG(4|8). There are nine such geometries: Cayley,
complex (two kinds), quaternionic, special Lagrangian, complex Lagrangian, as well as the
(3, i) subgeometries of the quaternionic geometry. All these geometries share the property
that they are calibrated by self-dual 4-forms inR8. The strategy in this section is the
following. We fix a given 4-plane inE8 and we will describe the orbits of this plane under
different subgroups of SO8. In many cases, these subgroups will be determined uniquely by
specifying a certain structure (complex, quaternionic, etc.) inE8 which it leaves invariant.

5.1. Notation and basic strategy

We will let {ei} for i = 1,2, . . . ,8 be an oriented orthonormal basis forE8, and introduce
the shorthand notationeij ···k = ei ∧ ej ∧ · · · ∧ ek. This choice of basis allows us to identify
E8 with its dual, and forms with polyvectors. Our reference oriented 4-plane will bee1234.
Its SO8-isotropyK is isomorphic to SO4 × SO4, the first factor acting on the span ofe1234
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and the second on the span ofe5678. The Grassmannian of oriented 4-planes inE8 is then
the SO8-orbit of e1234,

G(4|8) = SO8 · e1234 ∼= SO8

SO4 × SO4
.

For every subgroupG ⊂ SO8, theG-orbit of e1234 is a subset of the Grassmannian which
is itself isomorphic to a coset space,

G(4|8) ⊃ G · e1234 ∼= G

G ∩K .

In what follows we will specify the groupG in terms of invariant structures onE8.
It is well known that a complex structure determines an SU4 subgroup of SO8 which shares

its maximal torus with a Spin7 subgroup. Also a quaternionic structure determines an Sp2
subgroup of SO8. This Sp2 subgroup is nothing but the intersection of the SU4 subgroups
corresponding to each of the three complex structures in the quaternionic structure. A
quaternionic structure allows us to think ofE8 as H2. A given split H2 = H ⊕ H is
preserved by an Sp1 × Sp1 subgroup of the Sp2, and this Sp1 × Sp1 subgroup in turn
determines a diagonal Sp1 subgroup, whose maximal torus defines a U1 subgroup. Starting
with different complex structures and some extra structure along the way, we will therefore
be able to construct all the geometries of interest.

5.2. A guided tour

We start, following [16], by introducing a convenient notation for complex structures in
E8. By a complex structure

I =
(

1 3 5 7
2 4 6 8

)
, (7)

we mean thatI e1 = e2, I e2 = −e1, I e3 = e4, etc. Each complex structure determines a
“Kähler” 2-form, which in this case is given by

ωI = e12 + e34 + e56 + e78,

which in turn defines a self-dual 4-form, called the Kähler calibration:

1
2ω

2
I = e1234+ e1256+ e1278, (8)

where as above we have introduced the explicit self-dual 4-forms

eijkl = eijkl + ?eijkl .

A complex structureI also defines a special Lagrangian calibration3I in the following
way. We start by defining the following complex vectors:

ζi = e2i−1 + √−1e2i
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for i = 1,2,3,4. They have the virtue that they are eigenvectors ofI and therefore
“diagonalise” the Kähler form:

ωI = 1
2Im

4∑
i=1

ζi ∧ ζ̄i .

The special Lagrangian calibration3I is then defined as the following real 4-form:

3I = Re(ζ1 ∧ ζ2 ∧ ζ3 ∧ ζ4),
expanding to

3I = e1357− e1368− e1467− e1458,

which is manifestly self-dual. Notice that3I does not calibratee1234. This is to be expected
because a plane cannot be both complex and Lagrangian (hence totally real) relative to the
same complex structure.

Therefore we choose a second complex structureJ defined by

J =
(

1 2 3 4
8 7 6 5

)
. (9)

Its Kähler form is given byωJ = e18 + e27 + e36 + e45, which squares to

1
2ω

2
J = e1278+ e1368+ e1458. (10)

The special Lagrangian form is given by

3J = e1234+ e1256− e1357+ e1467, (11)

which clearly calibratese1234. Whereas the special Lagrangian calibration3J is SU4-invariant,
the Kähler calibration1

2ω
2
J is actually U4-invariant. Nevertheless, the centre of U4, being

generated by the complex structureJ itself, stabilises the plane, whence, just as for the
special Lagrangian Grassmannian, the complex Grassmannian is an SU4 orbit.

Now consider the combination

�J = 3J − 1
2ω

2
J .

As shown in [26], this is a Cayley form and is left invariant by the Spin7 subgroup of SO8
which contains (and shares the same maximal torus with) the SU4 leavingJ invariant. In
our case,�J expands to

�J = e1234+ e1256− e1278− e1357− e1368− e1458+ e1467, (12)

from which we see that it calibratese1234.
The two complex structuresI andJ defined above anticommute:K ≡ IJ = −JI, where

K =
(

1 2 3 4
−7 8 −5 6

)
, (13)
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correcting a typo in [16]. Therefore{I, J,K} define a quaternionic structure onE8. The
intersection of the SU4 subgroups corresponding to the three complex structures is an
Sp2 subgroup of SO8. Given an Sp2 subgroup it gives rise to a family of 24 quaternionic
structures: all possible reorderings and consistent sign changes in{I, J,K}. The Kähler
and special Lagrangian calibrations for each of the complex structures in the quaternionic
structure satisfy a number of useful identities:

3I = 1
2ω

2
K − 1

2ω
2
J , 3J = 1

2ω
2
I − 1

2ω
2
K, 3K = 3I +3J . (14)

A useful way to construct new calibrations out of old ones is to takeconvexlinear
combinations. By this we mean a linear combination

∑
i aiCi , where eachCi is a calibration

and ai ≥ 0 with
∑
i ai = 1. Such a linear combination is automatically a calibration

and moreover its Grassmannian is the intersection of theCi-Grassmannians. Becausee1234

belongs to both the complex Grassmannian corresponding toI and to the special Lagrangian
Grassmannian corresponding toJ , we can take the following convex linear combination:

4 = 1
4ω

2
I + 1

23J ,

which expands to

4 = e1234+ e1256+ 1
2e

1278− 1
2e

1357+ 1
2e

1467. (15)

Its Grassmannian consists of those planes which are complex with respect toI and special
Lagrangian with respect toJ . The resulting geometry is called complex Lagrangian. The
same geometry arises as the calibrated geometry of the convex linear combination

4′ = 1
23J + 1

23K,

which expands to

4′ = e1234+ e1256− 1
2e

1357− 1
2e

1368− 1
2e

1458+ 1
2e

1467. (16)

The4′-Grassmannian consists of planes which are special Lagrangian with respect to both
J andK. It is not hard to show that the4′-and4-geometries agree.

Indeed, it is enough to show that ifξ is special Lagrangian with respect toJ , thenξ is
special Lagrangian with respect toK if and only if it is complex with respect toI . Using
the fact that for any complex structure, the Kähler calibration1

2ω
2 is identically zero on

the special Lagrangian GrassmannianG(3), and the first identity in (14), it follows that
3I and 1

2ω
2
K agree onG(3J ). Therefore if a planeξ in G(3J ) is also inG(3K) then

1
2ω

2
K(ξ) = 0, whence3I (ξ) = 0 so thatξ ∈ G(1

2ω
2
I ). Similarly if ξ is inG(1

2ω
2
I ), then

3I (ξ) = 0 whence1
2ω

2
K(ξ) = 0 andξ ∈ G(3K).

A useful convex linear combination of calibrations is the quaternionic calibration. Given
a quaternionic structure{I, J,K}, we can define a quaternionic 4-form

2{I,J,K} ≡ 1
6(ω

2
I + ω2

J + ω2
K).

Being a convex linear combination of Kähler calibrations,2{I,J,K} is also a calibration
whose Grassmannian consists of planes which are complex with respect to each of the
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complex structuresI , J andK. For this reasone1234, being a special Lagrangian plane
relative toJ cannot be quaternionic relative to2. We remedy this by defining another
complex structure

J ′ =
(

1 2 5 6
3 −4 7 −8

)
,

which also anticommutes withI . Therefore{I ′ = I, J ′,K ′ = I ′J ′} defines a quaternionic
structure, with quaternionic form2 ≡ 2{I ′;,J ′;,K ′;} given by

2 = e1234+ 1
3e

1256+ 1
3e

1278+ 1
3e

1357− 1
3e

1368+ 1
3e

1458+ 1
3e

1467, (17)

which now clearly calibratese1234. As in the case of the Kähler calibration,2 is actually
invariant under Sp1·Sp2; but because the Sp1 factor is generated by the quaternionic structure
itself, the quaternionic Grassmannian is actually the Sp2-orbit of e1234.

In contrast to a quaternionic structure, which consists of two anticommuting complex
structures, let us consider twocommutingcomplex structures:I defined in (7) andI ′′ defined
by

I ′′ =
(

1 3 5 7
2 −4 −6 8

)
. (18)

Let us consider the self-dual form (again correcting a typo in [16])

6 ≡ 1
4ω

2
I − 1

4ω
2
I ′′ = e1234+ e1256 = (e12 + e78) ∧ (e34 + e56). (19)

In order to see that this form is a calibration, it is easiest to rewrite it as a convex linear
combination of special Lagrangian forms

6 = 1
23J + 1

23J ′′ ,

whereJ is the complex structure in (9) andJ ′′ is given by

J ′′ =
(

1 2 3 4
−8 −7 6 5

)
,

which corrects yet another typo in [16]. The complex structuresJ andJ ′′ are also commut-
ing. Moreover,I ′′ andJ ′′ anticommute, whence{I, J,K = IJ} and{I ′′, J ′′,K ′′ = I ′′J ′′}
are two commuting quaternionic structures.

From the product form of6 in (19), we see that the6-planes are products of a complex

plane in the span ofe1278 relative toI1 =
(

1 7
2 8

)
and a complex plane relative toI2 =(

3 5
4 6

)
in the span ofe3456. Equivalently,2 6-planes are products of a special Lagrangian

2 This exemplifies the fact that 2-planes inE4 which are complex relative to a Kähler calibrationωI , are special
Lagrangian relative to3J , whereI , J , andK = IJ defines a quaternionic structure. This is because of the
isomorphism SU2 ∼= Sp1, so that the SU2 which leavesI invariant actually leaves invariant a quaternionic
structure.
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plane relative toJ1 =
(

1 2
8 7

)
in the span ofe1278and a special Lagrangian plane relative

to J2 =
(

3 4
6 5

)
in the span ofe3456. 6 is invariant under an U2 × U2 subgroup of SO8.

The centre stabilisese1234 — in fact, it stabilises the spans ofe12 ande34 separately —
whence the6-Grassmannian is the Sp1 × Sp1 orbit of e1234.

Finally we point out that the calibrations corresponding to the(3, i) geometries can be
constructed out of complex and quaternionic structures. In fact, we have the following
expressions

9(3,1) = 3
42+ 1

4�J , 9(3,2) = 3
52− 2

5ω
2
I ′′ , 9(3,3) = 1

22− 1
22̃,

whereJ andI ′′ are the complex structures defined by (9) and (18), respectively, and where
2̃ ≡ 2{Ĩ ,J̃ ,K̃}, given by

2̂ = −e1234− 1
3e

1256+ 1
3e

1278+ 1
3e

1357+ 1
3e

1368− 1
3e

1458+ 1
3e

1467,

is the quaternionic calibration corresponding to the quaternionic structure generated by
Ĩ = I ′′ in (18) and

J̃ =
(

1 2 5 6
3 4 7 8

)
.

6. Generalised self-duality

Every (constant coefficient) 4-formϕ in E8 defines an endomorphism of the space of
2-forms:

ϕ̂ :
2∧

E
8 →

2∧
E

8, ω 7→ ?(?ϕ ∧ ω). (20)

Explicitly, if ϕ = ∑
i<j<k<lϕijkl eijkl andω = ∑

i<jωij eij then

(ϕ̂ω)ij =
∑
k<l

ϕijkl ωkl.

This expression clearly shows thatϕ̂ is traceless, and symmetric under the natural inner
product

〈α, β〉 ≡ ?(α ∧ ?β) =
∑
i<j

αij βij

on the space of 2-forms. This means thatϕ̂ will be diagonalisable. IfG is the SO8-isotropy
subgroup ofϕ, then the eigenspaces ofϕ̂ areG-submodules of

∧2
E8, the 28or adjoint

representationso8 of SO8. A canonicalG-submodule is the adjoint representationg ⊂ so8,
but of course there are otherG-submodules as well. One can useϕ̂ to define a generalised
self-dualityfor 2-forms in eight dimensions by demanding that a 2-form belongs to a definite
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G-submodule ofso8. This generalises self-duality in four dimensions, where we can take
ϕ = ?1, andϕ̂ = ? itself. The eigenspaces ofϕ̂ in this case are the subspaces of self-dual and
anti-self-dual 2-forms: corresponding to the adjoint representations of the two Sp1 factors
in SO4 ∼= Sp1 · Sp1.

Generalised self-duality plays a crucial role in the attempts to generalise the notion of
Yang–Mills instantons to higher dimensions [13,44]. Suppose that the Yang–Mills curvature
F(A) satisfies a generalised self-duality condition

ϕ̂ F (A) = c F (A) (21)

for somenon-zeroconstantc. Then one easily computes

dA ? F(A) = c−1 dA(?ϕ ∧ F(A)) = c−1(d ? ϕ ∧ F(A)+ ?ϕ ∧ dA F(A)),

whence using the Bianchi identitydAF(A) = 0 and provided that?ϕ is closed, the
Yang–Mills equations of motion are satisfied automatically. In the geometries under con-
siderationϕ is self-dual and it is constant, so that it is co-closed.

In what follows we will discuss the possible notions of self-duality which are available
for each of the above geometries in eight dimensions, by analysing the eigenspace decom-
positions of the endomorphismŝϕ corresponding to the different calibrationsϕ described
above. We should remark however that despite the fact that a one-to-one correspondence
between geometries and generalised self-duality conditions is not expected — after all
self-duality depends crucially on the calibration, whereas as we saw above for the case of
the complex Lagrangian geometry, different calibrations can give rise to the same geometry
— nevertheless we will see that in some cases the geometry does determine the possible
generalised self-dualities.

6.1. Cayley geometry

The Cayley calibration (12) is invariant under aspin7-subgroup of SO8, under which the
28breaks up as

28 → 7 ⊕ 21,

where the 21corresponds to the adjoint representationspin7 ⊂ so8. It is well known that
the endomorphism̂� obeys the following characteristic polynomial:

(�̂− 1)(�̂+ 31) = 0,

whence we see that the eigenvalues are 1 and−3, and (using tracelessness of�̂) with
multiplicities 21 and 7, respectively. Therefore there are two possible notions of self-duality,
and hence two possible extensions of the notion of instanton to eight dimensions. As shown
in [1], supersymmetry seems to prefer the definition of instanton which says thatF(A)

belongs tospin7 ⊂ so8: �̂F (A) = F(A). Gauge fields satisfying this relation are known
asoctonionic instantons, for reasons explained in [19].
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6.2. Complex geometries

Let I denote the complex structure defined in Eq. (7), and letϒ ≡ 1
2ω

2
I , which is given

by (8). Letϒ̂ denote the endomorphism of 2-forms defined fromϒ according to (20). Its
characteristic polynomial is given by

(ϒ̂ − 31)(ϒ̂ − 1)(ϒ̂ + 1) = 0,

whenceϒ has three eigenvalues 3, 1 and−1. The multiplicities are 1, 12 and 15, respectively.
ϒ is U4 invariant, and under U4 ∼= (SU4 × U1)/Z4 the 28breaks up as

28 → 62 ⊕ 6−2 ⊕ 150 ⊕ 10,

where the last two factors correspond to the adjoint representationu4 = su4⊕u1 ⊂ so8, and
where the first two factors together make up an irreduciblereal representation of dimension
12. Therefore there is no accidental degeneracy in the eigenspace decomposition ofϒ̂ ,
in the sense that the group theory does not refine any further the eigenvalues ofϒ̂ . The
natural self-duality condition in gauge theory is the one which says thatF(A) belongs to
su4 ⊂ so8: ϒ̂F (A) = −F(A). These equations are the well-known Kähler–Yang–Mills
equations, studied in [17,43].

6.3. Special Lagrangian geometry

Let3 ≡ 3J denote the special Lagrangian form defined by Eq. (11). It is invariant under
SU4 ⊂ SO8, under which the 28breaks up as

28 → 2 6⊕ 1 ⊕ 15,

where now each 6is a real representation of SU4 ∼= Spin6. The map3̂ on 2-forms obeys
the following characteristic polynomial:

(3̂+ 21)3̂(3̂− 21) = 0,

whence it has eigenvalues−2, 0 and 2. The multiplicities can easily worked to be 6, 16 and
6, which shows that the eigenvalue 0 is degenerate.

6.4. Complex Lagrangian geometry

Let 4 denote the complex Lagrangian calibration given by (15). The corresponding
endomorphism̂4 satisfies the characteristic polynomial(

4̂− 5
21
) (
4̂− 3

21
) (
4̂− 1

211
) (
4̂+ 1

21
) (
4̂+ 3

21
)

= 0,

so that it has five eigenvalues:5
2, 3

2, 1
2, −1

2 and−3
2. The multiplicities are 1, 5, 6, 11 and

5, which again agrees witĥ4 being traceless. The eigenvalues±1
2 are now degenerate,



122 J.M. Figueroa-O’Farrill / Journal of Geometry and Physics 35 (2000) 99–125

a fact for which there seems to be no group-theoretical explanation, since4 is precisely
Sp2-invariant, and under Sp2 the 28breaks up as

28 → 3 1⊕ 3 5⊕ 10.

The three singlets correspond toωI , ωJ andωK , and the 10corresponds to the adjoint
representation sp2 ⊂ so8.

Similarly, let4′ be the other complex Lagrangian calibration defined by (16) and let4̂′

be the corresponding endomorphism. It satisfies the characteristic polynomial

(4̂′ + 21)(4̂′ + 1)4̂′(4̂′ − 1)(4̂′ − 211) = 0.

The five eigenvalues−2,−1, 0, 1 and 2 have multiplicities 5, 2, 10, 10 and 1, respectively.
4̂′ is actually invariant under an U1 · Sp2 = (U1 × Sp2)/Z2 subgroup of SO8. Under this
subgroup the 28breaks up as

28 → 10 ⊕ 100 ⊕ 50 ⊕ 12 ⊕ 1−2 ⊕ 52 ⊕ 5−2. (22)

The first two factors correspond to the adjoint representationu1 ⊕ sp2 ⊂ so8. In terms of
real representations, 12 ⊕ 1−2 is an irreducible 2-dimensional representation and 52 ⊕ 5−2
is an irreducible 10-dimensional representation. Therefore there is no degeneracy in the
spectrum of4̂′.

6.5. Quaternionic geometry

The linear map̂2 associated to the quaternionic 4-form2 in (17) obeys the characteristic
polynomial

(2̂+ 11)
(
2̂− 1

311
) (
2̂− 5

31
)

= 0,

so that it has three eigenvalues:−1, 1
3 and 5

3. The multiplicities are 10, 15 and 3, respec-

tively, reiterating the fact that̂2 is traceless. The degeneracy of the eigenvalues is easily
explained if we remark that2 is actually invariant under the maximal subgroup Sp1 ·Sp2 =
(Sp1 × Sp2)/Z2 of SO8, under which the 28decomposes into three factors as

28 → (3,1)⊕ (1,10)⊕ (3,5),

the first two factors corresponding to the adjoint representation sp1 ⊕ sp2 ⊂ so8. The
corresponding self-duality equations for Yang–Mills fields were originally studied, in the
context of quaternionic Kähler manifolds, in [20,32].

6.6. Sub-quaternionic geometries

Finally let us consider the self-dual forms defined by (5). Let9̂i denote the endomorphism
of 2-forms defined by the calibration9(3,i). These maps obey the following characteristic
polynomials:
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Table 2
Geometries omitted from Table 1

(p|n) GroupG IsotropyH GeometryG/H Fractionν

(5|10) U1 × SU2 ? ? 3
32

(5|10) U1 {1} G(1|2)? 1
8

(9̂1 − 3
21)(9̂1 − 1

21)(9̂1 + 1
21)(9̂1 + 3

21) = 0,

(9̂2 − 7
51)(9̂2 − 3

51)(9̂2 + 1
51)(9̂2 + 1)(9̂2 + 9

51) = 0,

(9̂3 − 4
31)(9̂3 − 2

31)9̂3(9̂3 + 2
31)(9̂3 + 4

31) = 0.

The multiplicities of the eigenvalues are given as follows: for9̂1 the eigenvalues are32, 1
2,

−1
2, and−3

2 with multiplicities 3, 12, 9 and 4, respectively; for9̂2 the eigenvalues are75,
3
5, −1

5, −1 and−9
5 and−3

2 with multiplicities 3, 9, 9, 6 and 1, respectively; and for9̂3 the
eigenvalues are43, 2

3, 0,−2
3 and−4

3 with multiplicities 3, 6, 10, 6 and 3, respectively. The
forms9(3,i) are invariant with respect to the subgroupsK(3,i) of SO8 given in Eq. (6). As
mentioned above, these groups are subgroups of the Sp1 · Sp2 isotropy of the quaternionic
form 2 in Eq. (17). In fact, the first Sp1 factor inK(3,i) is precisely the same as the one
in Sp1 · Sp2. All eigenspace decompositions are degenerate for these three groups. As an
example, let us work out the(3,1) geometry. UnderK(3,1) the 28breaks up as

28 → (1,1,3)⊕ (1,3,1)⊕ 2(3,1,1)⊕ (1,2,2)⊕ (3,2,2),

which shows that the−1
2 eigenvalue is degenerate. Similar considerations hold for the (3,

2) and (3, 3) geometries. The generalised self-dual Yang–Mills equations have not been
studied for these geometries. They may provide an interesting refinement to the self-dual
Yang–Mills equations in quaternionic Kähler geometry.

7. Conclusion

In this paper we have presented a survey of some of the calibrated geometries which have
occurred in recent studies on the local singularity structure of supersymmetric fivebranes in
M-theory [2–4]. Some of these geometries appeared explicitly in [22,23] and implicitly in
some earlier work [8,37,40,42]. Calibrated geometries have also appeared in related contexts
in other papers [5,6,9,24,38,41]. Calibrated geometry is therefore beginning to emerge as
the natural language in which to phrase geometric questions in the study of branes. An
appropriate slogan might bebrane geometry is calibrated geometry.

Not all geometries which have appeared in our work have been showcased here. Our
choice reflects the present level of knowledge in this topic. We have omitted two of the
subgeometries ofG(5|10)which were obtained in [2], because we were not able to identify
them. They are summarised in Table 2 below. The systematic study of the faces ofG(p|n)
has alas stopped short of the interestingG(5|10) case: only partial results are known for
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G(4|8) and very little indeed forn > 8. It is hoped that this survey might help to rekindle
the interest in this problem.

Finally, it should be mentioned that the calibrated subgeometries of the Grassmannians
G(p|n) are far richer than what has been surveyed in this paper. We have only looked
at geometries defined bysupersymmetricbrane configurations; whereas other calibrated
geometries describe non-supersymmetric configurations whose study might still be phys-
ically interesting, since they correspond to local singularities of minimal submanifolds,
which presumably still give rise to stable states.
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